9,087 research outputs found

    Domain-wall tunneling electroresistance effect

    Get PDF

    Search for lepton flavor violating decays of a heavy neutral particle in p-pbar collisions at root(s)=1.8 TeV

    Get PDF
    We report on a search for a high mass, narrow width particle that decays directly to e+mu, e+tau, or mu+tau. We use approximately 110 pb^-1 of data collected with the Collider Detector at Fermilab from 1992 to 1995. No evidence of lepton flavor violating decays is found. Limits are set on the production and decay of sneutrinos with R-parity violating interactions.Comment: Figure 2 fixed. Reference 4 fixed. Minor changes to tex

    Decomposition of semigroup algebras

    Full text link
    Let A \subseteq B be cancellative abelian semigroups, and let R be an integral domain. We show that the semigroup ring R[B] can be decomposed, as an R[A]-module, into a direct sum of R[A]-submodules of the quotient ring of R[A]. In the case of a finite extension of positive affine semigroup rings we obtain an algorithm computing the decomposition. When R[A] is a polynomial ring over a field we explain how to compute many ring-theoretic properties of R[B] in terms of this decomposition. In particular we obtain a fast algorithm to compute the Castelnuovo-Mumford regularity of homogeneous semigroup rings. As an application we confirm the Eisenbud-Goto conjecture in a range of new cases. Our algorithms are implemented in the Macaulay2 package MonomialAlgebras.Comment: 12 pages, 2 figures, minor revisions. Package may be downloaded at http://www.math.uni-sb.de/ag/schreyer/jb/Macaulay2/MonomialAlgebras/html

    Van der Waals multiferroic tunnel junctions

    Get PDF

    Two-dimensional antiferroelectric tunnel junction

    Get PDF

    Structural Material Property Tailoring Using Deep Neural Networks

    Full text link
    Advances in robotics, artificial intelligence, and machine learning are ushering in a new age of automation, as machines match or outperform human performance. Machine intelligence can enable businesses to improve performance by reducing errors, improving sensitivity, quality and speed, and in some cases achieving outcomes that go beyond current resource capabilities. Relevant applications include new product architecture design, rapid material characterization, and life-cycle management tied with a digital strategy that will enable efficient development of products from cradle to grave. In addition, there are also challenges to overcome that must be addressed through a major, sustained research effort that is based solidly on both inferential and computational principles applied to design tailoring of functionally optimized structures. Current applications of structural materials in the aerospace industry demand the highest quality control of material microstructure, especially for advanced rotational turbomachinery in aircraft engines in order to have the best tailored material property. In this paper, deep convolutional neural networks were developed to accurately predict processing-structure-property relations from materials microstructures images, surpassing current best practices and modeling efforts. The models automatically learn critical features, without the need for manual specification and/or subjective and expensive image analysis. Further, in combination with generative deep learning models, a framework is proposed to enable rapid material design space exploration and property identification and optimization. The implementation must take account of real-time decision cycles and the trade-offs between speed and accuracy

    Effect of Short-Term Administration of Glucagon on Gene Expression of the Insulin Receptor in Primary Cultured Calf Hepatocytes

    Get PDF
    This study investigated whether increased glucagon levels, caused by the short-term administration of glucagon, lead to an increase in gene expression of the insulin receptor (InsR) in calf hepatocytes cultured in vitro. After 72 hrs of culturing, glucagon was added to calf hepatocytes at a five different concentrations of 0, 1, 10, 100 and 1000 nM. InsR mRNA expression was determined by internally controlled reverse transcriptase polymerase chain reaction. No changes in InsR mRNA expression (InsR/β-actin gray scale) were detected in hepatocytes treated with glucagon compared with the control group and there were no significant differences between the different concentrations. In conclusion, short-term administration of glucagon did not directly influence the gene expression of InsR in primary cultured calf hepatocytes

    Regional innovation and spillover effects of foreign direct investment in China: a threshold approach

    Get PDF
    Using a data set on twenty-nine Chinese provinces for the period 1985–2008, this paper establishes a threshold model to analyse the relationship between spillover effects of foreign direct investment (FDI) and regional innovation in China. There is clear evidence of double-threshold effects of regional innovation on productivity spillovers from FDI. Specifically, only when the level of regional innovation reaches the minimum innovation threshold will FDI in the region begin to produce positive productivity spillovers. Furthermore, positive productivity spillovers from FDI will be substantial only when the level of regional innovation attains a higher threshold. The double threshold divides Chinese provinces into three super-regions in terms of innovation, with most provinces positioned within the middle-level innovation super-region. Policy implications are discussed

    Permeability Estimates of Self-Affine Fracture Faults Based on Generalization of the Bottle Neck Concept

    Full text link
    We propose a method for calculating the effective permeability of two-dimensional self-affine permeability fields based on generalizing the one-dimensional concept of a bottleneck. We test the method on fracture faults where the local permeability field is given by the cube of the aperture field. The method remains accurate even when there is substantial mechanical overlap between the two fracture surfaces. The computational efficiency of the method is comparable to calculating a simple average and is more than two orders of magnitude faster than solving the Reynolds equations using a finite-difference scheme
    • …
    corecore