6,215 research outputs found

    Weak and Strong coupling regimes in plasmonic-QED

    Full text link
    We present a quantum theory for the interaction of a two level emitter with surface plasmon polaritons confined in single-mode waveguide resonators. Based on the Green's function approach, we develop the conditions for the weak and strong coupling regimes by taking into account the sources of dissipation and decoherence: radiative and non-radiative decays, internal loss processes in the emitter, as well as propagation and leakage losses of the plasmons in the resonator. The theory is supported by numerical calculations for several quantum emitters, GaAs and CdSe quantum dots and NV centers together with different types of resonators constructed of hybrid, cylindrical or wedge waveguides. We further study the role of temperature and resonator length. Assuming realistic leakage rates, we find the existence of an optimal length at which strong coupling is possible. Our calculations show that the strong coupling regime in plasmonic resonators is accessible within current technology when working at very low temperatures (<4K). In the weak coupling regime our theory accounts for recent experimental results. By further optimization we find highly enhanced spontaneous emission with Purcell factors over 1000 at room temperature for NV-centers. We finally discuss more applications for quantum nonlinear optics and plasmon-plasmon interactions.Comment: published as Phys. Rev. B 87, 115419 (2013

    High resolution 10 mu spectrometry at different planetary latitudes. A practical Hadamard transform spectrometer for astronomical application

    Get PDF
    Infrared observations at different latitudes were studied in order to obtain spectra in the 10 micrometers region to understand differences in chemical composition or physical structure of the optical features. In order to receive such spectra of a rotating planet, simultaneous observations at different latitudes were made. A Hadamard transform spectrometer with 15 entrance slits was used to obtain 15 simultaneous spectra, at a resolution of 0.01 micrometers. The spectral band covered contained 255 spectral elements

    On the lifting of the Nagata automorphism

    Get PDF
    It is proved that the Nagata automorphism (Nagata coordinates, respectively) of the polynomial algebra F[x,y,z]F[x,y,z] over a field FF cannot be lifted to a zz-automorphism (zz-coordinate, respectively) of the free associative algebra KK. The proof is based on the following two new results which have their own interests: degree estimate of Q∗FF{Q*_FF} and tameness of the automorphism group AutQ(Q∗FF){\text{Aut}_Q(Q*_FF)}.Comment: 15 page

    Leukocyte count and two-part differential in whole blood based on a portable microflow cytometer

    Get PDF
    This work demonstrated leukocyte count and two-part leukocyte differential from the whole blood based on a portable microflow cytometer system. Leukocytes are selectively stained with a fluorescent dye, Acridine Orange (AO). The blood sample is then pumped through a disposable microfluidic device for fluorescence sensing. Under blue LED excitation (460nm), the green fluorescence from DNA and the red fluorescence from RNA are detected simultaneously with two photomultiplier tubes (PMT). Leukocytes are counted and differentiated into two parts, lymphocyte versus non-lymphocyte, based on their fluorescence signatures. The results, including leukocyte absolute count and lymphocyte ratio, matched well with the commercial hemacytometer counts (maximal error 9.0%, correlation coefficient ~0.8). We also tested the system for the first time under a zero-gravity (zero-G) environment that facilitated its application in space missions

    Symbiotic Bright Solitary Wave Solutions of Coupled Nonlinear Schrodinger Equations

    Full text link
    Conventionally, bright solitary wave solutions can be obtained in self-focusing nonlinear Schrodinger equations with attractive self-interaction. However, when self-interaction becomes repulsive, it seems impossible to have bright solitary wave solution. Here we show that there exists symbiotic bright solitary wave solution of coupled nonlinear Schrodinger equations with repulsive self-interaction but strongly attractive interspecies interaction. For such coupled nonlinear Schrodinger equations in two and three dimensional domains, we prove the existence of least energy solutions and study the location and configuration of symbiotic bright solitons. We use Nehari's manifold to construct least energy solutions and derive their asymptotic behaviors by some techniques of singular perturbation problems.Comment: to appear in Nonlinearit

    Viral vector platforms within the gene therapy landscape

    Get PDF
    Throughout its 40-year history, the field of gene therapy has been marked by many transitions. It has seen great strides in combating human disease, has given hope to patients and families with limited treatment options, but has also been subject to many setbacks. Treatment of patients with this class of investigational drugs has resulted in severe adverse effects and, even in rare cases, death. At the heart of this dichotomous field are the viral-based vectors, the delivery vehicles that have allowed researchers and clinicians to develop powerful drug platforms, and have radically changed the face of medicine. Within the past 5 years, the gene therapy field has seen a wave of drugs based on viral vectors that have gained regulatory approval that come in a variety of designs and purposes. These modalities range from vector-based cancer therapies, to treating monogenic diseases with life-altering outcomes. At present, the three key vector strategies are based on adenoviruses, adeno-associated viruses, and lentiviruses. They have led the way in preclinical and clinical successes in the past two decades. However, despite these successes, many challenges still limit these approaches from attaining their full potential. To review the viral vector-based gene therapy landscape, we focus on these three highly regarded vector platforms and describe mechanisms of action and their roles in treating human disease
    • …
    corecore