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ON THE LIFTING OF THE NAGATA

AUTOMORPHISM

ALEXEI BELOV-KANEL AND JIE-TAI YU

Abstract. It is proved that the Nagata automorphism (Nagata coor-

dinates, respectively) of the polynomial algebra F [x, y, z] over a field

F cannot be lifted to a z-automorphism (z-coordinate, respectively)

of the free associative algebra F 〈x, y, z〉. The proof is based on the

following two new results which have their own interests: degree esti-

mate of Q ∗F F 〈x1, . . . , xn〉 and tameness of the automorphism group

AutQ(Q ∗F F 〈x, y〉).

1. Introduction and main results

The long-standing famous Nagata conjecture for characteristic 0 was

proved by Shestakov and Umirbaev [12, 13], and a strong version of the

Nagata conjecture was proved by Umirbaev and Yu [14]. That is, the

Nagata automorphism (x−2y(y2+xz)− (y2+xz)2z, y+(y2+xz)z, z)

(Nagata coordinates x−2y(y2+xz)−(y2+xz)2z and y+(y2+xz)z re-

spectively) is (are) wild. In [11, 14], a stronger question (which implies

the Nagata conjecture and the strong Nagata conjecture) was raised:

whether the Nagata automorphism (coordinates) of the polynomial al-

gebra F [x, y, z] can be lifted to an automorphism (coordinates) of the

free associative F 〈x, y, z〉 over a field F ? We can also formulate

The General Lifting Problem. Let φ = (f1, . . . , fn) be an auto-

morphism of the polynomial algebra F [x1, . . . , xn] over a field F . Does

there exists an F -automorphism φ′ = (f ′

1, . . . , f
′

n) of the free associative

algebra F 〈x1, . . . , xn〉 such that each fi is the abelianization of f ′

i?
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For n = 2, the answer of the above problem is positive, as due to Jung

[5] and van der Kulk [6] every automorphism of F [x, y] is composation

of linear and elementary automorphisms which are liftable to automor-

phisms of F 〈x, y〉. Moreover, Makar-Limanov [9] and Czerniakiewicz

[7] proved independently that Aut(F 〈x, y〉) is actually isomorphic to

Aut(F [x, y]), which implies that the lifting is unique.

In this paper we prove the following new result, which partially answers

the question raised in [14] negatively. The result can be viewed as the

first step to attack the general lifting problem. In a forthcoming paper

[1], we will deal the general lifting problem.

Theorem 1.1. Let (f, g) be an wild F [z]-automorphism of F [x, y, z] =

F [z][x, y]. Then (f, g, z), as an F -automorphism of F [x, y, z], cannot

be lifted to an automorphism of F 〈x, y, z〉 fixing z.

The crucial step to prove Theorem 1.1 is the following

Theorem 1.2. Let (f, g) be a wild F [z]-automorphism of F [x, y, z] =

F [z][x, y], which can be effectively obtained as the product of the canon-

ical sequence of uniquely determined alternative operations (elementary

F (z)-automorphisms), and the sequence contains an elementary F (z)-

automorphism of the type (x, y + z−kxl + . . . ) or (x + z−kyl + . . . , y)

where l > 1. Then (f, g, z), as an F -automorphism of F [x, y, z], cannot

be lifted to an automorphism of F 〈x, y, z〉 fixing z.

Corollary 1.3. The Nagata automorphism cannot be lifted to an au-

tomorphism of F 〈x, y, z〉 fixing z.

Corollary 1.4. Let (f, g) be a wild F [z]-automorphism of F [x, y, z] =

F [z][x, y]. Then neither f nor g can be lifted to a z-coordinate of

F 〈x, y, z〉. In particular, the Nagata coordinates x − 2y(y2 + xz) −

(y2 + xz)2z and y + (y2 + xz)z cannot be lifted to any z-coordinate of

F 〈x, y, z〉.

Proof. Suppose (f, h) is an F [z]-automorphism, then obviously (f, h) is

the product of (f, g) and an elementary F [z]-automorphism of the type

(x, h1). Therefore (f, h) is liftable if and only if (f, g) is liftable. Hence

any F [z]-automorphism of the type (f, h) is not liftable. Therefore f

cannot be lifted to a z-coordinate of F 〈x, y, z〉. Same for g. �
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Crucial to the proof of Theorem 1.2 is the following new result, that im-

plies that the automorphism group AutQ(Q ∗F F 〈x, y〉) is tame, which

has its own interests.

Theorem 1.5 (on degree increasing process). Let Q be an extension

field over a field F . A Q-automorphism of Q∗FF 〈x, y〉 can be effectively

obtained as the product of a sequence of uniquely determined alternating

operations (elementary automorphisms) of the following types:

• x→ x, y → ryr′ +
∑
r0xr1x · · · rkxrk+1,

• x→ qxq′ + q0
∑
yq1y · · · qkyqk+1, y → y

where r, q, rj, qj ∈ Q.

The following new result of degree estimate is also essential to the proof

of Theorem 1.2.

Theorem 1.6 (Degree estimate). Let Q be an extension field of a field

F . Let A = Q ∗F F 〈x1, . . . , xn〉 be a co-product of Q and the free

associative algebra F 〈x1, . . . , xn〉 over F . Suppose f, g ∈ A are alge-

braically independent over Q, f+ and g+ are algebraically independent

over Q; or f+ and g+ are algebraically dependent, and neither f+ is

Q-proportional to a power g+, nor g+ is Q-proportional to a power f+.

Let P ∈ Q ∗F F 〈x, y〉\Q. Then

deg(P (f, g)) ≥
deg([f, g])

deg(fg)
wdeg(f),deg(g)(P ),

where the degree is the usual homogeneous degree with respect to x1, . . . , xn
and wr,s is the weight degree with respect to r, s.

Note that u is proportional to v for u, v ∈ Q ∗F F 〈x1, . . . , xn〉 means

that there exist p1, . . . , pm; q1, . . . , qm ∈ Q such that u = Σm
i=1pivqi (it

is important that ‘proportional’ is not reflexive, i.e. u is proportional

to v does not imply v is proportional to u), and that f+ is the highest

homogeneous form of f .

Remark 1.7. Theorem 1.6 is still valid for an arbitrary division ring

Q over a field F . The proof is almost the same. When Q = F (z)

then the result can be directly deduced from the degree estimate in

[10, 8] via substitution ψ : x → P1(z)xP2(z); y → R1(z)yR2(z) for

appropriate Pi, Ri ∈ F [z]. For any element τ in Q ∗F F 〈x, y〉 there
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exist Pi, Ri ∈ F [z] such that ψ(τ) ∈ F 〈x, y, z〉. In the sequel we only

use this special case regarding the lifting problem.

2. Proofs

Proof of Theorem 1.6 Similar to the proof of the main result of Li

and Yu [8], where Bergman’s Lemma [3, 4] on centralizers is used. See

also Makar-Limanov and Yu [10] for the special case of characteristic

0, where Bergman’s Lemma on radical [3, 4] is used. �

Proof of Theorem 1.5. Let φ = (f, g) be a Q-automorphism in

AutQ(Q ∗F F 〈x, y〉) which is not linear, namely,

degx,y(f) + degx,y(g) ≥ 3.

By Theorem 1.5, we obtain that either a power of f+ is proportional

to g+, or a power of g+ is proportional to f+. Now the proof is done

by induction. �

To prove the main result, we need a few more lemmas.

Definition. Let D be a domain containing a field K, E the field of

fractions of D. A monomial ∈ E ∗K K〈x, y〉 of the following form,

......ptq......

where t ∈ E\D, p, q ∈ {x, y}, is called a sandwich monomial, or just a

sandwich for short.

Lemma 2.1 (on sandwich preserving). In the constructive decomposa-

tion in Theorem 1.5, suppose a sandwich ...ptq... (where p, q ∈ {x, y},

t ∈ F (z)\F [z], appears on some step during the process of the effective

decomposation, then there will be some sandwich in any future step.

Proof. Let f be the polynomial obtained in the (n − 1)−th step of the

effective operation in Theorem 1.5, k = deg(f). Take all sandwiches sα
of the maximum total degree with respect to x and y. Let S =

∑
sα

be their sum. Let T =
∑
tβ be the sum of components (monomials)

tβ of f maximum total degree respect to x and y. It is possible that

sα = tβ for some α, β, then deg(sα) = deg(tβ) for all α, β. In this case

T = S +D.
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Suppose the n−th step has the following form x → x, y → y + G(x).

Let Ḡ be the sum of monomials in G with the maximum degree. Then

Ḡ(x) = G̃(x, . . . , x) where

G̃(x1, . . . , xn) =
∑

i

qi,1x1qi,2x2 · · ·xmqi,m+1, qij ∈ F (z),

m be the degree of the n−th step operation (elementary automorphism).

Let deg(S) < deg(T ). Consider elements of the form G̃(S, T, . . . , T ).

It is a linear combination of sandwiches. All of them have the following

form

q0siq1t2 · · · tm−1qm, qi ∈ Q.

Their sum is not zero, because for any polynomial of the form H =∑
i qi1x1qi2x2 · · ·xmqim+1

such that H(x, . . . , x) 6= 0 and for any S, T /∈

Q, H(S, T, . . . , T ) 6= 0.

If deg(S) = deg(T ), we consider elements of the form G̃(S, S, . . . , S).

It is a linear combination of sandwiches. All of them have the following

form

q0s1q1 · · · smqm, qi ∈ Q.

si are monomials from S. Their sum is not zero, because for any polyno-

mial of the form H =
∑

i qi1x1qi2x2 · · ·xmqim+1
such that H(x, . . . , x) 6=

0 and for any S ∈ Q, H(S, . . . , S) 6= 0.

Now we are going to prove (via degree estimate) that they cannot

cancel out by other monomials (which must be sandwiches). That is,

there are no other sandwiches which are in this form. They cannot be

produced by H(R1, . . . , Rm) where Ri are monomials either from S or

T . This can be easily seen from the following argument:

Suppose deg(S) = deg(T ) and D 6= 0. Then if we substitute mono-

mials forming S and D in different ‘words’, the outcomes would be

different. Similarly suppose deg(S) < deg(T ) and D 6= 0, then sub-

stituting monomials forming S and T in different ‘words’, the out-

comes would be different. Suppose D = 0, i.e. S = T . Then

H(T, . . . , T ) = H(S, . . . , S). Obviously in this case we need to do

nothing.
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Suppose we get such a sandwich because an element from F (z)\F [z]

appears between summands of polynomials, obtained by the the (previ-

ous) (n− 1)−th step. It means that ‘fractional coefficient’ in F (z)\F [z]

appears in the position in some term, between two monomials obtained

on the (n− 1)-th step. Let us describe this situation in more details.

Let

x→
∑

vi, y →
∑

ui

be an automorphism, obtained on the (n − 1)-th step. Consider n-th

step:

x→ x, y → y +
∑

i

qi0xq
i
1 · · ·xq

i
ni
.

Let vi = aiv̄ibi where ai, bi ∈ Q, v̄i begins with either x or y and also

ends with either x or y.

Suppose the leftmost factor q ∈ F (z)\F [z] corresponding to the left-

most factor q in monomial si in s appears in the corresponding sandwich

w. Then it has the form

w = qi0vα1
qi1 · · ·aαk

v̄αk
bαk

qikaαk+1
v̄αk+1

bαk+1
· · · aαni

v̄αni
bαni

qini

and the position v̄αk
bαk

qikaαk+1
v̄αk+1

corresponds to the position of frac-

tional coefficient in the sandwich s ·
∏n−1

i=1 vi living inside s = s1qs2, s1
ends with x or y, s2 begins with x or y. Then

q = bαk
qikaαk+1

, s1 = qi0vα1
qi1 · · · aαk

v̄αk
, s2Ti2 · · ·Tin =

= v̄αk+1
bαk+1

· · · aαni
v̄αni

bαni
qini
.

Only in that case cancellation is possible. Here Ti are monomial sum-

mands of T .

Now let us compare the degrees. deg(s1) < deg(s),
∑n

i=k deg(vi) ≤

(ni − k + 1) deg(T ) ≤ (m− 1) deg(T ). Hence

deg(W ) < deg(s) + (m− 1) deg(T ) = deg(G̃(s, T, . . . , T ))

so any cancellation is impossible. �

Lemma 2.2 (on coefficient improving). a) Let x′ = pxq; p, q ∈ F (z),

M~q(x) = xq1xq2 · · ·x, q
′

i = q−1qip
−1. Then M~q(x

′) = pM~q′
(x)q.
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b) Take the process in Theorem 1.5 without sandwiches. Then after

each step (except the last step), the outcome (f, g) has the following

properties:

• Both f and g are sandwich-free.

• The left coefficients of f and g belong to F [z]. Moreover, the

two coefficients are relatively prime.

• The right coefficients of f and g belong to F [z]. Moreover, the

two coefficients are relatively prime.

Now we can clearly see that the outcome of the last step also has the

above property.

Proof. a) is obvious; b) is a consequence of a). �

Lemma 2.3. Let f ∈ F (z) ∗F F 〈x, y〉, P (u) ∈ F (z) ∗ F [u] such that

each monomial has degree ≥ 2 respect to x and y. Suppose that one of

the coefficients of P has zero right z-degree and one of the coefficients

of f has zero right z-degree, and there is no coefficients of P and f with

negative right z-degree. Then P (f) has one of the coefficients with zero

right z-degree and the degree (respect to x and y) of corresponding term

is strictly more then deg(f).

Proof. Consider the highest degree monomials of P and f with zero

right z-degree, let P̃ , f̃ will be their sums. Let g be sum of terms of f

with zero right z-degree, h be the sum of terms of f of maximal degree.

Now consider again the highest degree monomials in P (u) with zero

right z-degree and substitute f̃ on the rightmost position instead of u

and h on other positions of u. We shall get some terms with non-zero

sum T (same argument as in the proof of sandwich lemma). All such

terms have zero right z-degree.

It remains to prove that such terms cannot cancel out from the other

terms. First of all, we need to consider only terms of P with zero right

z-degree, other terms can not make any influence. Second, we have

to consider substitutions only of terms with zero right z-degree on the

rightmost positions of u. Let V be their sum.



8 A.BELOV-KANEL AND JIE-TAI YU

But the sum of highest terms satisfying this conditions is equal to T

and T is the highest homogeneous component of V , hence V 6= 0. �

Corollary 2.4. Let f be a polynomial, P ∈ F (z) ∗F [x] such that each

monomial has degree ≥ 2. Suppose that one of the coefficients of P (f)

has (zero)negative right z-degree. Then P (f) has one of the coefficients

with (zero) negative right z-degree and degree of corresponding term is

strictly more then deg(f).

There is just the ‘dual’ left version of lemma 2.3 and corollary 2.4.

As a consequence of the above corollary, we get

Lemma 2.5. In the step x → x, (z → z because we are working with

z-automorphisms) y → y+xkz−l, k > 1 of the degree-strictly-increasing

process, applied to the automorphism x → x + higest terms, y → y +

higest terms causes some negative power(s).

In order to prove Theorem 1.1 we need a similar statement which is

also a consequence of the Corollary 2.4.

Lemma 2.6. In the step x→ x, (z → z because we are working with z-

automorphisms) y → y+P (x), such that P has negative powers of z as

left coefficients of some monomial of degree ≥ 2 in the degree-strictly-

increasing process causes some negative power(s) on any succeeding

step.

Lemma 2.3, Lemma 2.6 and Corollary 2.4 says that any further step

of non-linear operation either contains terms of negative power with

bigger degree, or does not interfere in the process. Hence they imply

the following

Lemma 2.7. a) Consider stage in strictly increasing process of follow-

ing form.

x→ T1 + h1, y → T2 + h2

where Ti are sums of the terms with negative powers of z to the right,

hi – are sums of the terms without negative powers of z to the right.

If Ti are F (z)-linear independent, then the negative powers can not be

cancelled in the strictly increasing process.
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b) Suppose T1 is the sum of the terms with negative powers of z to the

right, h1 – is the sum of the terms without negative powers of z to the

right, T2 is the sum of the terms with zero powers of z to the right, h2
is the sum of the terms with positive powers of z to the right.

If Ti are F (z)-linear independent, then the negative powers can not be

cancelled in the strictly increasing process.

In order to prove Theorem 1.1 we need slight generalization of the

previous lemma, which also follows from the Lemma 2.3 and Corollary

2.4.

Proposition 2.8. Consider stage in strictly increasing process of fol-

lowing form:

x → T1 + h1 + g1, y → T2 + h2 + g2

where Ti are sums of the terms with negative powers of z to the right,

hi – are sums of the terms with zero powers of z to the right, gi are

sums of the terms with positive powers of z to the right.

If Ti are F (z)-linear independent, or wedge product of vectors

(T1, T2)
∧

F [zl,zr]

(h1, h2) 6= 0,

then the negative powers can not be cancelled in the strictly increasing

process. Wedge product is taken respect to left and right F (z)-actions,

i.e. as F [zl, zr]-modula, monomial (respect to x, y, and inner positions

of z) are considered as basis vectors.

Proof. Pbviously, any linear operation cannot cancel the negative pow-

ers of z, but Lemma 2.3 and corollary 2.4 allows us to consider only

such operations. �

Remark 2.9. Considering the substitutions z → z + c one can get

similar results for negative powers of z + c (or via considering other

valuations of F (z)).

Lemma 2.10. Consider the step in the strictly increasing process of

following form.

x→ T + h′1, y → U + h′2

where T is the sum of the terms with negative powers of z to the right,

U the sum of the terms with negative powers of z to the right, h1 is the
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sum of the terms without negative powers of z to the right, h2 is the

sum of the terms with positive powers of z to the right.

If T and U are F (z)-linear independent, then the negative powers can-

not be cancelled in the strictly increasing process.

Proof. By induction. Input of composition with polynomials with x-

degree ≥ 2 cannot be cancelled (otherwise some negative power appears

in the highest terms, and the F (z)-independence preserves). But the

x-linear term action only produces the F (z)-linear combinations. �

Consider, for instance, the elementary automorphism

x→ x, y → y + znxk.

It can be lifted to an Q-automorphism

x→ x, y → y + zn0xk1zn1 · · ·xkszns ,
∑

ki = k,
∑

ni = n.

Though n < 0, n0 and ns can still be non-negative. It is necessary to

deal with that kind of situation by the next lemma.

Lemma 2.11. Consider a elementary mapping

x→ x; y → y + P (x)

such that P (x) has a monomial of the following form:

zk1xzk2x · · ·xzks

where one of ki < 0 for some i such that 1 < i < s. Then if such an

elementary transformation occurs in the strictly increasing process, it

must produce some sandwich.

Proof. First of all, due to the Lemma 2.1, we may assume without loss

of generality that there exists no sandwiches before this step.

Consider zki , the minimum power of z, lying before the variables for all

monomials in P . Next, consider the monomials in P of the minimum

degree containing zki between x’s and among them, i.e. the monomials

such that zki positioned on the left-most possible position (but then

i > 1, it should be a sandwich position). Let us denote such terms Ti.

Let

ϕ(x) =
∑

ui, ϕ(y) =
∑

vi
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will be an automorphism, obtained by the previous step. Due to the

Lemma 2.1 we may assume that no terms come from ui, vi are sand-

wiches.

Now we consider ui with minimal right z-degree nr, and among them

– terms with minimal degree (respect to x and y). Let urj will be such

terms, ur =
∑
urj . Because x is one of the ui, nr ≤ 0. Similarly

we consider ui with minimal left z-degree nl, terms ulj and their sum

ul =
∑
ulj. We also get nl ≤ 0.

Now for any monomial Tj , consider the element

ETj
= q

(j)
0 x · · ·urzniul · · ·xq(j)s

obtained by replacement of ur and ul into the positions of x surrounding

occurrence of zni as discussed previously, the resulting power of z would

be equal to nr + nl + ni ≤ ni < 0.

Now ETj
can be presented as a sum ETj

=
∑
METj

, where METj
are

monomials. Monomials METj
are sandwiches, they may appear only

that way which was described previously and hence cannot cancell by

other monomials. Hence we must have a sandwich. �
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3. Proofs of the main theorems

Proof of Theorem 1.2.

Suppose the automorphism (f, g) can be lifted to a z-automorphism of

F 〈x, y, z〉. Then it induces an automorphism of F (z) ∗F F 〈x, y〉 and

can be obtained by the process described in the Lemma on coefficient

improving.

Then at some steps some negative powers of z appear either between

variables or on the right or on the left and it will be preserved to the

end, due to Lemma 2.1 and Lemma 2.11, or Lemmas 2.10, 2.7, 2.5.

Hence in the lifted automorphism, there exists some negative power of

z. A contradiction. �

Proof of Theorem 1.1.

Let (f, g) be a wild F [z]-automorphism of F [x, y, z] such that it is not

of the type in Theorem 1.2. Consider corresponding strictly increasing

process. We shall need few more statements.

The following lemma is a consequence of Proposition 2.8.

Lemma 3.1. In the strictly increasing process. Consider the steps with

negative powers of z appearing to the right.

ϕ : x → x+ P (y), y → y

Let

ψ : x→ x, y → y +Q1(x) +Q2(x)

where deg(Q1) = 1, each term of Q2 has degree ≥ 2 and does not

contain negative powers of z. Then ψ = ψ1 ◦ψ2 where ψ1 : x → x, y →

y + Q1(x), ψ2 : x → x, y → y + Q2(x) and ϕψ2ϕ
−1 has no negative

powers of z to the right.

Lemma 3.1 together with its left analogue and remark 2.9 imply fol-

lowing statement:

Proposition 3.2. In the strictly increasing process, consider the step

with appearing coefficients not in F [z].

ϕ : x→ x+ P (y), y → y
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Let

ψ : x→ x, y → y +Q1(x) +Q2(x)

where deg(Q1) = 1, each term of Q2 has degree ≥ 2 and does not

contain negative powers of z . Then ψ = ψ1 ◦ ψ2 where ψ1 : x →

x, y → y + Q1(x), ψ2 : x → x, y → y + Q2(x) and ϕ ◦ ψ2 ◦ ϕ
−1 is a

z-automorphism of F 〈x, y, z〉.

Proof. Consider set of elements from F (z) which are coefficients of

our monomials. If all valuations of F (z) centered in finite points are

positive, then they belong to F [z] and we are done. Due to symmetry, it

is enough to consider right coefficients and due to substitution z → z+a

just valuation centered in zero. Then by Lemma 3.1, we are done. �

Proof. It is easy to see that ψ ◦ ϕ ◦ ψ−1 has following form: x →

x + c1R(a
′

21x + a′22y), y → c2R(a
′

21x + a′22y), where a
′

ij = αaij ∈ F [z]

are relatively prime, α ∈ F [z] is the least common multiple of the

denominators of a21, a22 ∈ F [z] and c1, c2 ∈ F [z] such that c1a21 +

c2a22 = 0. Choose r, s ∈ F [z] such that ra′21 + sa′22 = 1.

Acting the linear automorphism x → rx + sy, y → a′21x + a′22y over

F [z] to ψ ◦ ϕ ◦ ψ−1, we get an automorphism of the following form:

x→ rx+ sy + tR(a′21x+ a′22y), y → a′21x+ a′22y, which is elementarily

equivalent to x → rx + sy, y → a′21x + a′22y. Hence ψ ◦ ϕ ◦ ψ−1 is

tame. �

The next proposition is well-known from linear algebra.

Proposition 3.3. Let (f, g) is a z-automorphism of F [z][x, y] linear

in both x and y. Then it is a tame z-automorphism.

Now we are ready to complete the proof of Theorem 1.1. Suppose a z-

automorphism ϕ = (f, g) of F [z][x, y] can be lifted to an automorphism

of F [z] ∗F F 〈x, y〉 (i.e. an automorphism of F 〈x, y, z〉 fixing z), which

is decomposed into product of elementary one according to strictly in-

creasing process. The coefficients of elementary operation can be in

F (z)\F [z] only for linear terms (see Lemma 2.6 and Remark 2.9) and

conjugating non-linear elementary step with respect to the automor-

phisms corresponding to these terms are z-tame. Hence ϕ is a product

of z-tame automorphisms and z-automorphisms linear in both x and

y. Now we are done by Proposition 3.3.
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By carefully looking through the above proofs, we actually obtained

the following

Theorem 3.4. An automorphism (f, g) in AutF [z]F 〈x, y, z〉, can be

canonically decomposed as product of the following type of automor-

phisms:

i) Linear automorphisms in AutF [z]F 〈x, y, z〉;

ii) Automorphisms which can be obtained by an elementaty automor-

phism in AutF [z]F 〈x, y, z〉 conjugated by a linear automorphism in

AutF (z)F (z) ∗F F 〈x, y〉.

Theorem 3.4 opens a way to obtain stably tameness of AutF [z]F 〈x, y, z〉,

which will be done in a separate paper [2].
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