51,990 research outputs found
Science opportunities from the Topex/Poseidon mission
The U.S. National Aeronautics and Space Administration (NASA) and the French Centre National d'Etudes Spatiales (CNES) propose to conduct a Topex/Poseidon Mission for studying the global ocean circulation from space. The mission will use the techniques of satellite altimetry to make precise and accurate measurements of sea level for several years. The measurements will then be used by Principal Investigators (selected by NASA and CNES) and by the wider oceanographic community working closely with large international programs for observing the Earth, on studies leading to an improved understanding of global ocean dynamics and the interaction of the ocean with other processes influencing life on Earth. The major elements of the mission include a satellite carrrying an altimetric system for measuring the height of the satellite above the sea surface; a precision orbit determination system for referring the altimetric measurements to geodetic coordinates; a data analysis and distribution system for processing the satellite data, verifying their accuracy, and making them available to the scientific community; and a principal investigator program for scientific studies based on the satellite observations. This document describes the satellite, its sensors, its orbit, the data analysis system, and plans for verifying and distributing the data. It then discusses the expected accuracy of the satellite's measurements and their usefulness to oceanographic, geophysical, and other scientific studies. Finally, it outlines the relationship of the Topex/Poseidon mission to other large programs, including the World Climate Research Program, the U.S. Navy's Remote Ocean Sensing System satellite program and the European Space Agency's ERS-1 satellite program
Calibration of the Pulsed Electroacoustic Technique in the Presence of Trapped Charge
The influence of pulse voltage on the accuracy of charge density distribution in the pulsed electroacoustic technique (PEA) is discussed. It is shown that significant error can be introduced if a low dc voltage and high pulse voltage are used to calibrate charge density. However, our main focus in the present paper is to deal with one of the practical situations where space charge exists in the material prior to any measurements. The conventional calibration method can no longer be used to calibrate charge density due to the interference by the charge on the electrode induced by space charge. A method has been proposed which is based on two measurements. Firstly, the sample containing charge is measured without any applied voltage. The second measurement is carried out with a small external applied voltage. The applied voltage should be small enough so there is no disturbance of the existing charge in the sample. The difference of the two measurements can be used for calibration. An additional advantage of the proposed method avoids the influence of the pulse voltage on calibration and therefore gives a more accurate representation of space charge. The proposed method has been validated
Recommended from our members
Performance of bolted steel-beam to CFST-column joints using stiffened angles in column-removal scenario
This paper presents three experimental investigations on the performance of steel-beam to CFST-column joints using stiffened angle, long bolts and fin plate under a middle column removal scenario. Three specimens were designed and tested. The failure modes and catenary action are investigated in detail. The test results show that increasing the angle plate thickness at the joint could not only improve its performance significantly, but also trigger an early formation of catenary action. Increasing the length of short-limb had influence on the deformation ability of the proposed joint, rather than the load capacity. The buckling of stiffeners could prevent the brittle failure of the joints. With the contribution of catenary action, the joint shows much higher rotation capacities than that required in DoD design guidance. The initial stiffness of the joint was calculated using an analytical model with consideration of bolt pretension. Good agreement to the test results is achieved. A numerical analysis is also carried out, whose results show that adding additional row of bolts would improve the redundancy of the joint under column loss. An equivalent dynamic response evaluation of the joints was also performed. The results show that dynamic amplification coefficient should be worked out considering catenary action under large deformation
Potential distribution surrounding a photo- emitting plate in a dilute plasma
Potential distribution in photo-emitting plate in dilute plasma
Phase-Dependent Spontaneous Spin Polarization and Bifurcation Delay in Coupled Two-Component Bose-Einstein Condensates
The spontaneous spin polarization and bifurcation delay in two-component
Bose-Einstein condensates coupled with laser or/and radio-frequency pulses are
investigated. We find that the bifurcation and the spontaneous spin
polarization are determined by both physical parameters and relative phase
between two condensates. Through bifurcations, the system enters into the
spontaneous spin polarization regime from the Rabi regime. We also find that
bifurcation delay appears when the parameter is swept through a static
bifurcation point. This bifurcation delay is responsible for metastability
leading to hysteresis.Comment: Improved version for cond-mat/021157
The Influence of Material Modification and Residues on Space Charge Accumulation in XLPE for DC Power Cable Application
The effects of material modification and cross-linking by-products (residues) quantity on space charge accumulation and decay in XLPE have been investigated using the pulsed electro-acoustic technique. The threshold stress for space charge generation during voltage-ramping was found to show considerable variation and to depend upon the material and the amount of residue present. However, the modified XLPE material was found to exhibit a higher threshold for space charge accumulation than the reference XLPE whatever the conditions. De-gassed samples were found to exhibit the highest threshold stress, with that of the modified de-gassed XLPE accumulating no space charge at all even after 24 hours stressing at 70kV. In general heterocharge regions were formed when the residues were present and homocharge or no charge was formed when the residues were removed by degassing. Differences were also found in the space charge decay following short-circuit (volts-off), with the decay of heterocharge being rapid, whereas that of homocharge was slow. A tentative explanation is offered to explain these features
ALMA observations of the debris disk around the young Solar Analog HD 107146
We present ALMA continuum observations at a wavelength of 1.25 mm of the
debris disk surrounding the 100 Myr old solar analog HD 107146. The
continuum emission extends from about 30 to 150 AU from the central star with a
decrease in the surface brightness at intermediate radii. We analyze the ALMA
interferometric visibilities using debris disk models with radial profiles for
the dust surface density parametrized as i) a single power-law, ii) a single
power-law with a gap, and iii) a double power-law. We find that models with a
gap of radial width AU at a distance of AU from the central
star, as well as double power-law models with a dip in the dust surface density
at AU provide significantly better fits to the ALMA data than single
power-law models. We discuss possible scenarios for the origin of the HD 107146
debris disk using models of planetesimal belts in which the formation of
Pluto-sized objects trigger disruptive collisions of large bodies, as well as
models which consider the interaction of a planetary system with a planetesimal
belt and spatial variation of the dust opacity across the disk. If future
observations with higher angular resolution and sensitivity confirm the
fully-depleted gap structure discussed here, a planet with a mass of
approximately a few Earth masses in a nearly circular orbit at AU
from the central star would be a possible explanation for the presence of the
gap.Comment: (38 pages, 7 figures, accepted for publication in ApJ
- âŠ