23,639 research outputs found

    A Rate-Splitting Based Bound-Approaching Transmission Scheme for the Two-User Symmetric Gaussian Interference Channel with Common Messages

    Get PDF
    This paper is concerned with a rate-splitting based transmission strategy for the two-user symmetric Gaussian interference channel that contains common messages only. Each transmitter encodes its common message into multiple layers by multiple codebooks that drawn from one separate code book, and transmits the superposition of the messages corresponding to these layers; each receiver decodes the messages from all layers of the two users successively. Two schemes are proposed for decoding order and optimal power allocation among layers respectively. With the proposed decoding order scheme, the sum-rate can be increased by rate-splitting, especially at the optimal number of rate-splitting, using average power allocation in moderate and weak interference regime. With the two proposed schemes at the receiver and the transmitter respectively, the sum-rate achieves the inner bound of HK without time-sharing. Numerical results show that the proposed optimal power allocation scheme with the proposed decoding order can achieve significant improvement of the performance over equal power allocation, and achieve the sum-rate within two bits per channel use (bits/channel use) of the sum capacity

    Theoretical studies of the local structures and EPR parameters for Cu2+^{2+} center in Cd2_{2}(NH4_{4})2_{2}(SO4_{4})3_{3} single crystal

    Full text link
    The electron paramagnetic resonance (EPR) parameters (gg factors gig_{i} and the hyperfine structure constants Ai{{A}}_{{i}}, i=x,y,z{i} = {x}, {y}, {z}) are interpreted by using the perturbation formulae for a 3d93{d}^{9} ion in rhombically ({D}2h_{2h}) elongated octahedra. In the calculated formulae, the crystal field parameters are set up from the superposition model, and the contribution to the EPR parameters from the admixture of dd-orbitals in the ground state wave function of the Cu2+^{2+} ion was taken into account. Based on the calculation, local structural parameters of the impurity Cu2+^{2+} center in Cd2_{2}(NH4_{4})2_{2}(SO4_{4})3_{3} (CAS) crystal were obtained (i.e., Rx2.05{R}_{{x}}\approx 2.05 {\AA}, Ry1.91{R}_{{y}} \approx 1.91 {\AA}, Rz2.32{R}_{{z}} \approx 2.32 {\AA}). The theoretical EPR parameters based on the above Cu2+^{2+}-O2^{2-} bond lengths in CAS crystal show a good agreement with the observed values. The results are discussed.Comment: 5 page

    Sound velocity and absorption measurements under high pressure using picosecond ultrasonics in diamond anvil cell. Application to the stability study of AlPdMn

    Get PDF
    We report an innovative high pressure method combining the diamond anvil cell device with the technique of picosecond ultrasonics. Such an approach allows to accurately measure sound velocity and attenuation of solids and liquids under pressure of tens of GPa, overcoming all the drawbacks of traditional techniques. The power of this new experimental technique is demonstrated in studies of lattice dynamics, stability domain and relaxation process in a metallic sample, a perfect single-grain AlPdMn quasicrystal, and rare gas, neon and argon. Application to the study of defect-induced lattice stability in AlPdMn up to 30 GPa is proposed. The present work has potential for application in areas ranging from fundamental problems in physics of solid and liquid state, which in turn could be beneficial for various other scientific fields as Earth and planetary science or material research

    Calorimetric Evidence of Strong-Coupling Multiband Superconductivity in Fe(Te0.57Se0.43) Single Crystal

    Get PDF
    We have investigated the specific heat of optimally-doped iron chalcogenide superconductor Fe(Te0.57Se0.43) with a high-quality single crystal sample. The electronic specific heat Ce of this sample has been successfully separated from the phonon contribution using the specific heat of a non-superconducting sample (Fe0.90Cu0.10)(Te0.57Se0.43) as a reference. The normal state Sommerfeld coefficient gamma_n of the superconducting sample is found to be ~ 26.6 mJ/mol K^2, indicating intermediate electronic correlation. The temperature dependence of Ce in the superconducting state can be best fitted using a double-gap model with 2Delta_s(0)/kBTc = 3.92 and 2Delta_l(0)/kBTc = 5.84. The large gap magnitudes derived from fitting, as well as the large specific heat jump of Delta_Ce(Tc)/gamma_n*Tc ~ 2.11, indicate strong-coupling superconductivity. Furthermore, the magnetic field dependence of specific heat shows strong evidence for multiband superconductivity

    Positive surface charge of GluN1 N-terminus mediates the direct interaction with EphB2 and NMDAR mobility.

    Get PDF
    Localization of the N-methyl-D-aspartate type glutamate receptor (NMDAR) to dendritic spines is essential for excitatory synaptic transmission and plasticity. Rather than remaining trapped at synaptic sites, NMDA receptors undergo constant cycling into and out of the postsynaptic density. Receptor movement is constrained by protein-protein interactions with both the intracellular and extracellular domains of the NMDAR. The role of extracellular interactions on the mobility of the NMDAR is poorly understood. Here we demonstrate that the positive surface charge of the hinge region of the N-terminal domain in the GluN1 subunit of the NMDAR is required to maintain NMDARs at dendritic spine synapses and mediates the direct extracellular interaction with a negatively charged phospho-tyrosine on the receptor tyrosine kinase EphB2. Loss of the EphB-NMDAR interaction by either mutating GluN1 or knocking down endogenous EphB2 increases NMDAR mobility. These findings begin to define a mechanism for extracellular interactions mediated by charged domains

    A two-step approach for calculating chloride diffusion coefficient in concrete with both natural and recycled concrete aggregates.

    Get PDF
    This paper presents an analytical approach to calculate the effective diffusion coefficient of chlorides in concrete with both natural and recycled concrete aggregates. In the approach the concrete is treated as a composite consisting of three phases, namely mortar, natural aggregate plus interfacial transition zone, and recycled concrete aggregate plus interfacial transition zone. The effective diffusion coefficient of chlorides in the composite is calculated through two steps. The first step is to calculate the effective diffusion coefficients of chlorides in the natural aggregate plus interfacial transition zone and in the recycled concrete aggregate plus interfacial transition zone by using multilayer spherical approximation, the results of which provide the information about the quality of recycled concrete aggregate in terms of chloride penetration resistance. The second step is to calculate the effective diffusion coefficient of chlorides in the three-phase concrete composite by using effective medium approximation, the results of which provide the information about the influence of recycled concrete aggregate on the diffusivity of recycled aggregate concrete. The analytical expression of the effective diffusion coefficient is derived and carefully compared with the results obtained from both the experiments and numerical simulations, which demonstrates that the present analytical model is rational and reliable. The analytical expression presented can be used to predict the service life of recycled aggregate concrete exposed to chloride environment

    On relativistic approaches to the pion self-energy in nuclear matter

    Full text link
    We argue that, in contrast to the non-relativistic approach, a relativistic evaluation of the nucleon--hole and delta-isobar--nucleon hole contributions to the pion self-energy incorporates the s-wave scattering, which requires a more accurate evaluation. Therefore relativistic approach containing only these diagrams does not describe appropriately the pion self-energy in isospin symmetric nuclear matter. We conclude that, a correct relativistic approach to the pion self-energy should involve a more sophisticated calculation in order to satisfy the known experimental results on the near-threshold behaviour of the pion-nucleon (forward) scattering amplitude.Comment: 7 pages,1 figur

    Cryptanalysis of an MPEG-Video Encryption Scheme Based on Secret Huffman Tables

    Get PDF
    This paper studies the security of a recently-proposed MPEG-video encryption scheme based on secret Huffman tables. Our cryptanalysis shows that: 1) the key space of the encryption scheme is not sufficiently large against divide-and-conquer (DAC) attack and known-plaintext attack; 2) it is possible to decrypt a cipher-video with a partially-known key, thus dramatically reducing the complexity of the DAC brute-force attack in some cases; 3) its security against the chosen-plaintext attack is very weak. Some experimental results are included to support the cryptanalytic results with a brief discuss on how to improve this MPEG-video encryption scheme.Comment: 8 pages, 4 figure

    A Role for Myosin VI in the Localization of Axonal Proteins

    Get PDF
    In neurons polarized trafficking of vesicle-bound membrane proteins gives rise to the distinct molecular composition and functional properties of axons and dendrites. Despite their central role in shaping neuronal form and function, surprisingly little is known about the molecular processes that mediate polarized targeting of neuronal proteins. Recently, the plus-end-directed motor Myosin Va was shown to play a critical role in targeting of transmembrane proteins to dendrites; however, the role of myosin motors in axonal targeting is unknown. Here we show that Myosin VI, a minus-end-directed motor, plays a vital role in the enrichment of proteins on the surface of axons. Engineering non-neuronal proteins to interact with Myosin VI causes them to become highly concentrated at the axonal surface in dissociated rat cortical neurons. Furthermore, disruption of either Myosin VI function or expression leads to aberrant dendritic localization of axonal proteins. Myosin VI mediates the enrichment of proteins on the axonal surface at least in part by stimulating dendrite-specific endocytosis, a mechanism that has been shown to underlie the localization of many axonal proteins. In addition, a version of Channelrhodopsin 2 that was engineered to bind to Myosin VI is concentrated at the surface of the axon of cortical neurons in mice in vivo, suggesting that it could be a useful tool for probing circuit structure and function. Together, our results indicate that myosins help shape the polarized distributions of both axonal and dendritic proteins

    Displacement length and velocity of tagged logs in the tagliamento river

    Get PDF
    corecore