302,676 research outputs found

    Chiral expansion of the π0γγ\pi^0\rightarrow\gamma\gamma decay width

    Full text link
    A chiral field theory of mesons has been applied to study the contribution of the current quark masses to the π0γγ\pi^0\rightarrow\gamma\gamma decay width at the next leading order. 2%2\% enhancement has been predicted and there is no new parameter.Comment: 9 page

    A Rate-Splitting Based Bound-Approaching Transmission Scheme for the Two-User Symmetric Gaussian Interference Channel with Common Messages

    Get PDF
    This paper is concerned with a rate-splitting based transmission strategy for the two-user symmetric Gaussian interference channel that contains common messages only. Each transmitter encodes its common message into multiple layers by multiple codebooks that drawn from one separate code book, and transmits the superposition of the messages corresponding to these layers; each receiver decodes the messages from all layers of the two users successively. Two schemes are proposed for decoding order and optimal power allocation among layers respectively. With the proposed decoding order scheme, the sum-rate can be increased by rate-splitting, especially at the optimal number of rate-splitting, using average power allocation in moderate and weak interference regime. With the two proposed schemes at the receiver and the transmitter respectively, the sum-rate achieves the inner bound of HK without time-sharing. Numerical results show that the proposed optimal power allocation scheme with the proposed decoding order can achieve significant improvement of the performance over equal power allocation, and achieve the sum-rate within two bits per channel use (bits/channel use) of the sum capacity

    Asymptotically Universal Crossover in Perturbation Theory with a Field Cutoff

    Full text link
    We discuss the crossover between the small and large field cutoff (denoted x_{max}) limits of the perturbative coefficients for a simple integral and the anharmonic oscillator. We show that in the limit where the order k of the perturbative coefficient a_k(x_{max}) becomes large and for x_{max} in the crossover region, a_k(x_{max}) is proportional to the integral from -infinity to x_{max} of e^{-A(x-x_0(k))^2}dx. The constant A and the function x_0(k) are determined empirically and compared with exact (for the integral) and approximate (for the anharmonic oscillator) calculations. We discuss how this approach could be relevant for the question of interpolation between renormalization group fixed points.Comment: 15 pages, 11 figs., improved and expanded version of hep-th/050304

    Particle Spectrum of the Supersymmetric Standard Model from the Massless Excitations of a Four Dimensional Superstring

    Get PDF
    A superstring action is quantised with Neveu Schwarz(NS) and Ramond(R) boundary conditions. The zero mass states of the NS sector are classified as the vector gluons, W-mesons, BμB_{\mu}-mesons and scalars containing Higgs. The fifteen zero mass fermions are obtained from the Ramond sector. A space time supersymmetric Hamiltonian of the Standard Model is presented without any conventional SUSY particles

    Nonperturbative signatures in pair production for general elliptic polarization fields

    Full text link
    The momentum signatures in nonperturbative multiphoton pair production for general elliptic polarization electric fields are investigated by employing the real-time Dirac-Heisenberg-Wigner formalism. For a linearly polarized electric field we find that the positions of the nodes in momenta spectra of created pairs depend only on the electric field frequency. The polarization of external fields could not only change the node structures or even make the nodes disappear but also change the thresholds of pair production. The momentum signatures associated to the node positions in which the even-number-photon pair creation process is forbid could be used to distinguish the orbital angular momentum of created pairs on the momenta spectra. These distinguishable momentum signatures could be relevant for providing the output information of created particles and also the input information of ultrashort laser pulses.Comment: 8 pages, 4 figures, submitted to Europhysics Letter

    Correlations of chaotic eigenfunctions: a semiclassical analysis

    Full text link
    We derive a semiclassical expression for an energy smoothed autocorrelation function defined on a group of eigenstates of the Schr\"odinger equation. The system we considered is an energy-conserved Hamiltonian system possessing time-invariant symmetry. The energy smoothed autocorrelation function is expressed as a sum of three terms. The first one is analogous to Berry's conjecture, which is a Bessel function of the zeroth order. The second and the third terms are trace formulae made from special trajectories. The second term is found to be direction dependent in the case of spacing averaging, which agrees qualitatively with previous numerical observations in high-lying eigenstates of a chaotic billiard.Comment: Revtex, 13 pages, 1 postscript figur

    Systemic risk in dynamical networks with stochastic failure criterion

    Full text link
    Complex non-linear interactions between banks and assets we model by two time-dependent Erd\H{o}s Renyi network models where each node, representing bank, can invest either to a single asset (model I) or multiple assets (model II). We use dynamical network approach to evaluate the collective financial failure---systemic risk---quantified by the fraction of active nodes. The systemic risk can be calculated over any future time period, divided on sub-periods, where within each sub-period banks may contiguously fail due to links to either (i) assets or (ii) other banks, controlled by two parameters, probability of internal failure pp and threshold ThT_h ("solvency" parameter). The systemic risk non-linearly increases with pp and decreases with average network degree faster when all assets are equally distributed across banks than if assets are randomly distributed. The more inactive banks each bank can sustain (smaller ThT_h), the smaller the systemic risk---for some ThT_h values in I we report a discontinuity in systemic risk. When contiguous spreading becomes stochastic (ii) controlled by probability p2p_2---a condition for the bank to be solvent (active) is stochastic---the systemic risk decreases with decreasing p2p_2. We analyse asset allocation for the U.S. banks.Comment: 7 pages, 7 figure

    Detection of a planetary system orbiting the eclipsing polar HU Aqr

    Full text link
    Using the precise times of mid-egress of the eclipsing polar HU Aqr, we discovered that this polar is orbited by two or more giant planets. The two planets detected so far have masses of at least 5.9 and 4.5\,M_{Jup}. Their respective distances from the polar are 3.6 AU and 5.4 AU with periods of 6.54 and 11.96 years, respectively. The observed rate of period decrease derived from the downward parabolic change in O-C curve is a factor 15 larger than the value expected for gravitational radiation. This indicates that it may be only a part of a long-period cyclic variation, revealing the presence of one more planet. It is interesting to note that the two detected circumbinary planets follow the Titus-Bode law of solar planets with n=5 and 6. We estimate that another 10 years of observations will reveal the presence of the predicted third planet.Comment: 13 pages, 4 figures, 2 table
    corecore