26 research outputs found

    A Comparison of the Sensitivity and Fecal Egg Counts of the McMaster Egg Counting and Kato-Katz Thick Smear Methods for Soil-Transmitted Helminths

    Get PDF
    Currently, in public health, the reduction in the number of eggs excreted in stools after drug administration is used to monitor the efficacy of drugs against parasitic worms. Yet, studies comparing diagnostic methods for the enumeration of eggs in stool are few. We compared the Kato-Katz thick smear (Kato-Katz) and McMaster egg counting (McMaster) methods, which are commonly used diagnostic methods in public and animal health, respectively, for the diagnosis and enumeration of eggs of roundworms, whipworms and hookworms in 1,536 stool samples from children in five trials across Africa, Asia and South America. The Kato-Katz method was the most sensitive for the detection of roundworms, but there was no significant difference in sensitivity between the methods for hookworms and whipworms. The sensitivity of the methods differed across the trials and magnitude of egg counts. The Kato-Katz method resulted in significantly higher egg counts, but these were subject to lack of accuracy caused by intrinsic properties of this method. McMaster provided more reliable estimates of drug efficacies. We conclude that the McMaster is an alternative method for monitoring large-scale treatment programs. It allows accurate monitoring of drug efficacy and can be easily performed under field conditions

    Field evaluation of a new antibody-based diagnostic for Schistosoma haematobium and S. mansoni at the point-of-care in northeast Zimbabwe

    Get PDF
    BACKGROUND: Rapid diagnostic tests (RDTs) for use at the point-of-care (POC) are likely to become increasingly useful as large-scale control programmes for schistosomiasis get underway. Given the low sensitivity of the reference standard egg count methods in detecting light infections, more sensitive tests will be required to monitor efforts aimed at eliminating schistosomiasis as advocated by the World Health Assembly Resolution 65.21 passed in 2012. METHODS: A recently developed RDT incorporating Schistosoma mansoni cercarial transformation fluid (SmCTF) for detection of anti-schistosome antibodies in human blood was here evaluated in children (mean age: 7.65 years; age range: 1-12 years) carrying light S. mansoni and S. haematobium infections in a schistosome-endemic area of Zimbabwe by comparison to standard parasitological techniques (i.e. the Kato-Katz faecal smear and urine filtration). Enzyme-linked immunosorbent assays (ELISAs) incorporating S. haematobium antigen preparations were also employed for additional comparison. RESULTS: The sensitivity of the SmCTF-RDT compared to standard parasitological methods was 100% while the specificity was 39.5%. It was found that the sera from RDT “false-positive” children showed significantly higher antibody titres in IgM-cercarial antigen preparation (CAP) and IgM-soluble egg antigen (SEA) ELISA assays than children identified by parasitology as “true-negatives”. CONCLUSIONS: Although further evaluations are necessary using more accurate reference standard tests, these results indicate that the RDT could be a useful tool for the rapid prevalence-mapping of both S. mansoni and S. haematobium in schistosome-endemic areas. It is affordable, user-friendly and allows for diagnosis of both schistosome species at the POC

    A new rapid diagnostic test for detection of anti-Schistosoma mansoni and anti-Schistosoma haematobium antibodies

    Get PDF
    Parasitological methods are widely used for the diagnosis of schistosomiasis. However, they are insensitive, particularly in areas of low endemicity, and labour-intensive. Immunoassays based on detection of anti-schistosome antibodies have the merit of high sensitivity and recently a rapid diagnostic test (RDT), incorporating Schistosoma mansoni cercarial transformation fluid (SmCTF) for detection of anti-schistosome antibodies in blood has been developed. Here, we assessed the diagnostic performance of the SmCTF-RDT for S. mansoni and S. haematobium infections by comparing it with microscopy for egg detection.; A cross-sectional survey was carried out in Azaguié, south Côte d'Ivoire. 118 pre-school-aged children submitted two stool and two urine samples, which were subjected to the Kato-Katz and urine filtration methods for the detection of S. mansoni and S. haematobium eggs, respectively. Urine was also subjected to a commercially available cassette test for S. mansoni, which detects circulating cathodic antigen. A finger-prick blood sample was used for the SmCTF-RDT for detection of anti-S. mansoni and anti-S. haematobium antibodies.; The prevalence of both anti-S. mansoni and anti-S. haematobium antibodies was more than three times higher than the prevalence of infection estimated by egg detection under a microscope. Using quadruplicate Kato-Katz as the reference standard for the diagnosis of S. mansoni infection, the sensitivity, negative predictive value (NPV), and positive predictive value (PPV) of the SmCTF-RDT was 75.0%, 84.2% and 22.5%, respectively. When two urine filtrations were considered as the reference standard for the diagnosis of S. haematobium infection, the sensitivity, NPV and PPV of SmCTF-RDT was 66.7%, 94.9% and 5.1%, respectively. The specificity of SmCTF-RDT, when using egg-detection as the reference standard, was estimated to be 34.4%. This low specificity may be a reflection of the relative insensitivity of the direct diagnostic approaches using microscopy.; The SmCTF-RDT is at least as sensitive as duplicate Kato-Katz and a single urine filtration for detection of S. mansoni and S. haematobium, respectively. Further investigations into the specificity of the test for anti-schistosome antibodies are necessary, but our results suggest that it may be a useful tool for mapping the prevalence of anti-schistosome antibodies in a given population pending intervention

    Schistosoma japonicum cathepsin B as potential diagnostic antigen for Asian zoonotic schistosomiasis

    No full text
    In this study, the diagnostic value of Schistosoma japonicum cathepsin B (SjCatB) was evaluated as an antigen for the early detection of S. japonicum infection. SjCatB is a key protease used by the cercaria to penetrate the intact skin of the host for transdermal infection. The early exposure of the host’s immune system to this enzyme may elicit early production of antibodies against this molecule. Therefore, the recombinant SjCatB (rSjCatB) was expressed in Escherichia coli with N-terminal 6xHis-tag. rSjCatB was tested for its performance as a diagnostic antigen using indirect enzyme-linked immunosorbent assay (ELISA) with sera from experimentally infected mice collected at \u3e 8 weeks post-infection. Showing 100% sensitivity and 95.0% specificity in the ELISA, rSjCatB was then evaluated with sera from experimentally infected mice collected at 1–7 weeks post-infection to determine how early the antibodies can be detected. Results showed that as early as 6 weeks post-infection, 2 of the 3 infected mice were found to be positive with the antibodies against SjCatB. Furthermore, the potential of the recombinant antigen in detecting human schistosomiasis was evaluated with archived serum samples collected from individuals who had been diagnosed with S. japonicum infection by stool examination. Results showed 86.7% sensitivity and 96.7% specificity suggesting its high diagnostic potential for human schistosomiasis. In addition, SjCatB showed minimal cross-reaction with the sera collected from patients with other parasitic diseases. In conclusion, the results of this study suggest that SjCatB will be useful in the development of a sensitive and specific early detection test for S. japonicum infection

    Merging species? Evidence for hybridization between the eel parasites <it>Anguillicola crassus</it> and <it>A. novaezelandiae</it> (Nematoda, Anguillicolidea)

    No full text
    <p>Abstract</p> <p>Background</p> <p>The eel parasitic nematodes <it>Anguillicola crassus</it> (originating from Asia) and <it>Anguillicola novaezelandiae</it> (originating from New Zealand) were both introduced to Europe, but occurred in sympatry only in Lake Bracciano in Italy, where they both infected the European eel (<it>Anguilla anguilla</it>). <it>A. novaezelandiae</it> was introduced to the lake in 1975 and disappeared soon after <it>A. crassus</it> was also found there in 1993. We tested the hypothesis if hybridization of the two species might be an explanation for the findings at Lake Bracciano.</p> <p>Findings</p> <p>After laboratory infection of one European eel with 10 third stage larvae of each parasite, two living female and 4 male adults of each species were found to co-occur in the swim bladder after 222 days post exposure. In 9 out of 17 eggs, isolated in total from uteri of the two <it>A. novaezelandiae</it> females, alleles were detected by microsatellite analysis that are characteristic for <it>A. crassus</it>, suggesting the hybrid origin of these eggs. In contrast, none of the eggs isolated from <it>A. crassus</it> females possessed alleles different from those found in <it>A. crassus</it> adults, but it was revealed that one female can be inseminated by several males.</p> <p>Conclusion</p> <p>Our results show that <it>A. crassus</it> and <it>A. novaezelandiae</it> can co-infect a single eel and can mature together in the same swim bladder. We also provide evidence for the possibility of hybridization of <it>A. crassus</it> males with <it>A. novaezelandiae</it> females. Therefore, hybridization might be an explanation for the disappearance of <it>A. novaezelandiae</it> from Lake Bracciano.</p
    corecore