166 research outputs found

    Risk stratification and subclinical phenotyping of dilated and/or arrhythmogenic cardiomyopathy mutation-positive relatives: CVON eDETECT consortium

    Get PDF
    In relatives of index patients with dilated cardiomyopathy and arrhythmogenic cardiomyopathy, early detection of disease onset is essential to prevent sudden cardiac death and facilitate early treatment of heart failure. However, the optimal screening interval and combination of diagnostic techniques are unknown. The clinical course of disease in index patients and their relatives is variable due to incomplete and age-dependent penetrance. Several biomarkers, electrocardiographic and imaging (echocardiographic deformation imaging and cardiac magnetic resonance imaging) techniques are promising non-invasive methods for detection of subclinical cardiomyopathy. However, these techniques need optimisation and integration into clinical practice. Furthermore, determining the optimal interval and intensity of cascade screening may require a personalised approach. To address this, the CVON-eDETECT (early detection of disease in cardiomyopathy mutation carriers) consortium aims to integrate electronic health record data from long-term follow-up, diagnostic data sets, tissue and plasma samples in a multidisciplinary biobank environment to provide personalised risk stratification for heart failure and sudden cardiac death. Adequate risk stratification may lead to personalised screening, treatment and optimal timing of implantable cardioverter defibrillator implantation. In this article, we describe non-invasive diagnostic techniques used for detection of subclinical disease in relatives of index patients with dilated cardiomyopathy and arrhythmogenic cardiomyopathy

    Evaluation of the endoplasmic reticulum-stress response in eIF2B-mutated lymphocytes and lymphoblasts from CACH/VWM patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Eukaryotic translation initiation factor 2B (eIF2B), a guanine nucleotide exchange factor (GEF) and a key regulator of translation initiation under normal and stress conditions, causes an autosomal recessive leukodystrophy of a wide clinical spectrum. EBV-immortalised lymphocytes (EIL) from eIF2B-mutated patients exhibit a decrease in eIF2B GEF activity. eIF2B-mutated primary fibroblasts have a hyper-induction of activating transcription factor 4 (ATF4) which is involved in the protective unfolded protein response (UPR), also known as the ER-stress response. We tested the hypothesis that EIL from eIF2B-mutated patients also exhibit a heightened ER-stress response.</p> <p>Methods</p> <p>We used thapsigargin as an ER-stress agent and looked at polysomal profiles, rate of protein synthesis, translational activation of <it>ATF4</it>, and transcriptional induction of stress-specific mRNAs (<it>ATF4, CHOP, ASNS, GRP78</it>) in normal and eIF2B-mutated EIL. We also compared the level of stress-specific mRNAs between EIL and primary lymphocytes (PL).</p> <p>Results</p> <p>Despite the low eIF2B GEF activity in the 12 eIF2B-mutated EIL cell lines tested (range 40-70% of normal), these cell lines did not differ from normal EIL in their ATF4-mediated ER-stress response. The absence of hyper-induction of ATF4-mediated ER-stress response in eIF2B-mutated EIL in contrast to primary fibroblasts is not related to their transformation by EBV. Indeed, PL exhibited a higher induction of the stress-specific mRNAs in comparison to EIL, but no hyper-induction of the UPR was noticed in the eIF2B-mutated cell lines in comparison to controls.</p> <p>Conclusions</p> <p>Taken together with work of others, our results demonstrate the absence of a major difference in ER-stress response between controls and eIF2B-mutated cells. Therefore, components of the ER-stress response cannot be used as discriminantory markers in eIF2B-related disorders.</p

    Risk stratification and subclinical phenotyping of dilated and/or arrhythmogenic cardiomyopathy mutation-positive relatives:CVON eDETECT consortium

    Get PDF
    In relatives of index patients with dilated cardiomyopathy and arrhythmogenic cardiomyopathy, early detection of disease onset is essential to prevent sudden cardiac death and facilitate early treatment of heart failure. However, the optimal screening interval and combination of diagnostic techniques are unknown. The clinical course of disease in index patients and their relatives is variable due to incomplete and age-dependent penetrance. Several biomarkers, electrocardiographic and imaging (echocardiographic deformation imaging and cardiac magnetic resonance imaging) techniques are promising non-invasive methods for detection of subclinical cardiomyopathy. However, these techniques need optimisation and integration into clinical practice. Furthermore, determining the optimal interval and intensity of cascade screening may require a personalised approach. To address this, the CVON-eDETECT (early detection of disease in cardiomyopathy mutation carriers) consortium aims to integrate electronic health record data from long-term follow-up, diagnostic data sets, tissue and plasma samples in a multidisciplinary biobank environment to provide personalised risk stratification for heart failure and sudden cardiac death. Adequate risk stratification may lead to personalised screening, treatment and optimal timing of implantable cardioverter defibrillator implantation. In this article, we describe non-invasive diagnostic techniques used for detection of subclinical disease in relatives of index patients with dilated cardiomyopathy and arrhythmogenic cardiomyopathy

    Pro-Arrhythmic Potential of Accumulated Uremic Toxins Is Mediated via Vulnerability of Action Potential Repolarization

    Get PDF
    Chronic kidney disease (CKD) is represented by a diminished filtration capacity of the kidneys. End-stage renal disease patients need dialysis treatment to remove waste and toxins from the circulation. However, endogenously produced uremic toxins (UTs) cannot always be filtered during dialysis. UTs are among the CKD-related factors that have been linked to maladaptive and pathophysiological remodeling of the heart. Importantly, 50% of the deaths in dialysis patients are cardiovascular related, with sudden cardiac death predominating. However, the mechanisms responsible remain poorly understood. The current study aimed to assess the vulnerability of action potential repolarization caused by exposure to pre-identified UTs at clinically relevant concentrations. We exposed human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) and HEK293 chronically (48 h) to the UTs indoxyl sulfate, kynurenine, or kynurenic acid. We used optical and manual electrophysiological techniques to assess action potential duration (APD) in the hiPSC-CMs and recorded I Kr currents in stably transfected HEK293 cells (HEK-hERG). Molecular analysis of K V11.1, the ion channel responsible for I Kr, was performed to further understand the potential mechanism underlying the effects of the UTs. Chronic exposure to the UTs resulted in significant APD prolongation. Subsequent assessment of the repolarization current I Kr, often most sensitive and responsible for APD alterations, showed decreased current densities after chronic exposure to the UTs. This outcome was supported by lowered protein levels of K V11.1. Finally, treatment with an activator of the I Kr current, LUF7244, could reverse the APD prolongation, indicating the potential modulation of electrophysiological effects caused by these UTs. This study highlights the pro-arrhythmogenic potential of UTs and reveals a mode of action by which they affect cardiac repolarization

    Fetal akinesia deformation sequence and massive perivillous fibrin deposition resulting in fetal death in six fetuses from one consanguineous couple, including literature review

    Get PDF
    Background: Massive perivillous fibrin deposition (MPFD) is associated with adverse pregnancy outcomes and is mainly caused by maternal factors with limited involvement of fetal or genetic causes. We present one consanguineous couple with six fetuses developing Fetal Akinesia Deformation Sequence (FADS) and MPFD, with a possible underlying genetic cause. This prompted a literature review on prevalence of FADS and MPFD. Methods: Fetal ultrasound examination, motor assessment, genetic testing, postmortem examination, and placenta histology are presented (2009–2019). Literature was reviewed for the association between congenital anomalies and MPFD. Results: All six fetuses developed normally during the first trimester. Thereafter, growth restriction, persistent flexed position, abnormal motility, and contractures in 4/6, consistent with FADS occurred. All placentas showed histologically confirmed MPFD. Genetic analyses in the five available cases showed homozygosity for two variants of unknown significance in two genes, VARS1 (OMIM*192150) and ABCF1 (OMIM*603429). Both parents are heterozygous for these variants. From 63/1999 manuscripts, 403 fetal outcomes were mobilized. In 14/403 fetuses, congenital abnormalities in association with MPFD were seen of which two fetuses with contractures/FADS facial anomalies. Conclusion: The low prevalence of fetal contractures/FADS facial anomalies in association with MPFD in the literature review supports the possible fetal or genetic contribution causing FADS and MPFD in our family. This study with literature review supports the finding that fetal, fetoplacental, and/or genetic components may play a role in causing a part of MPFDs

    Developmental Splicing Deregulation in Leukodystrophies Related to EIF2B Mutations

    Get PDF
    Leukodystrophies (LD) are rare inherited disorders that primarily affect the white matter (WM) of the central nervous system. The large heterogeneity of LD results from the diversity of the genetically determined defects that interfere with glial cells functions. Astrocytes have been identified as the primary target of LD with cystic myelin breakdown including those related to mutations in the ubiquitous translation initiation factor eIF2B. EIF2B is involved in global protein synthesis and its regulation under normal and stress conditions. Little is known about how eIF2B mutations have a major effect on WM. We performed a transcriptomic analysis using fibroblasts of 10 eIF2B-mutated patients with a severe phenotype and 10 age matched patients with other types of LD in comparison to control fibroblasts. ANOVA was used to identify genes that were statistically significantly differentially expressed at basal state and after ER-stress. The pattern of differentially expressed genes between basal state and ER-stress did not differ significantly among each of the three conditions. However, 70 genes were specifically differentially expressed in eIF2B-mutated fibroblasts whatever the stress conditions tested compared to controls, 96% being under-expressed. Most of these genes were involved in mRNA regulation and mitochondrial metabolism. The 13 most representative genes, including genes belonging to the Heterogeneous Nuclear Ribonucleoprotein (HNRNP) family, described as regulators of splicing events and stability of mRNA, were dysregulated during the development of eIF2B-mutated brains. HNRNPH1, F and C mRNA were over-expressed in foetus but under-expressed in children and adult brains. The abnormal regulation of HNRNP expression in the brain of eIF2B-mutated patients was concomitant with splicing dysregulation of the main genes involved in glial maturation such as PLP1 for oligodendrocytes and GFAP in astrocytes. These findings demonstrate a developmental deregulation of splicing events in glial cells that is related to abnormal production of HNRNP, in eIF2B-mutated brains

    National laboratory-based surveillance system for antimicrobial resistance: a successful tool to support the control of antimicrobial resistance in the Netherlands

    Get PDF
    An important cornerstone in the control of antimicrobial resistance (AMR) is a well-designed quantitative system for the surveillance of spread and temporal trends in AMR. Since 2008, the Dutch national AMR surveillance system, based on routine data from medical microbiological laboratories (MMLs), has developed into a successful tool to support the control of AMR in the Netherlands. It provides background information for policy making in public health and healthcare services, supports development of empirical antibiotic therapy guidelines and facilitates in-depth research. In addition, participation of the MMLs in the national AMR surveillance network has contributed to sharing of knowledge and quality improvement. A future improvement will be the implementation of a new semantic standard together with standardised data transfer, which will reduce errors in data handling and enable a more real-time surveillance. Furthermore, the
    • …
    corecore