5,379 research outputs found

    Stabilization of quantum metastable states by dissipation

    Full text link
    Normally, quantum fluctuations enhance the escape from metastable states in the presence of dissipation. Here we show that dissipation can enhance the stability of a quantum metastable system, consisting of a particle moving in a strongly asymmetric double well potential, interacting with a thermal bath. We find that the escape time from the metastable state has a nonmonotonic behavior versus the system-bath coupling and the temperature, producing a stabilizing effect.Comment: 4 pages, 3 figures, submitted to Phys. Rev.

    Moment Equations for a Spatially Extended System of Two Competing Species

    Get PDF
    The dynamics of a spatially extended system of two competing species in the presence of two noise sources is studied. A correlated dichotomous noise acts on the interaction parameter and a multiplicative white noise affects directly the dynamics of the two species. To describe the spatial distribution of the species we use a model based on Lotka-Volterra (LV) equations. By writing them in a mean field form, the corresponding moment equations for the species concentrations are obtained in Gaussian approximation. In this formalism the system dynamics is analyzed for different values of the multiplicative noise intensity. Finally by comparing these results with those obtained by direct simulations of the time discrete version of LV equations, that is coupled map lattice (CML) model, we conclude that the anticorrelated oscillations of the species densities are strictly related to non-overlapping spatial patterns.Comment: 10 pages, 3 figure

    Moment equations in a Lotka-Volterra extended system with time correlated noise

    Get PDF
    A spatially extended Lotka-Volterra system of two competing species in the presence of two correlated noise sources is analyzed: (i) an external multiplicative time correlated noise, which mimics the interaction between the system and the environment; (ii) a dichotomous stochastic process, whose jump rate is a periodic function, which represents the interaction parameter between the species. The moment equations for the species densities are derived in Gaussian approximation, using a mean field approach. Within this formalism we study the effect of the external time correlated noise on the ecosystem dynamics. We find that the time behavior of the 1st1^{st} order moments are independent on the multiplicative noise source. However the behavior of the 2nd2^{nd} order moments is strongly affected both by the intensity and the correlation time of the multiplicative noise. Finally we compare our results with those obtained studying the system dynamics by a coupled map lattice model.Comment: 12 pages, 7 figures, to appear in Acta Phys. Pol.

    Combined frequency-amplitude nonlinear modulation: theory and applications

    Full text link
    In this work we formulate a generalized theoretical model to describe the nonlinear dynamics observed in combined frequency-amplitude modulators whose characteristic parameters exhibit a nonlinear dependence on the input modulating signal. The derived analytical solution may give a satisfactory explanation of recent laboratory observations on magnetic spin-transfer oscillators and fully agrees with results of micromagnetic calculations. Since the theory has been developed independently of the mechanism causing the nonlinearities, it may encompass the description of modulation processes of any physical nature, a promising feature for potential applications in the field of communication systems.Comment: 8 pages, 4 figures, to be published on IEEE Transactions on Magnetic

    Noise Induced Phenomena in the Dynamics of Two Competing Species

    Get PDF
    Noise through its interaction with the nonlinearity of the living systems can give rise to counter-intuitive phenomena. In this paper we shortly review noise induced effects in different ecosystems, in which two populations compete for the same resources. We also present new results on spatial patterns of two populations, while modeling real distributions of anchovies and sardines. The transient dynamics of these ecosystems are analyzed through generalized Lotka-Volterra equations in the presence of multiplicative noise, which models the interaction between the species and the environment. We find noise induced phenomena such as quasi-deterministic oscillations, stochastic resonance, noise delayed extinction, and noise induced pattern formation. In addition, our theoretical results are validated with experimental findings. Specifically the results, obtained by a coupled map lattice model, well reproduce the spatial distributions of anchovies and sardines, observed in a marine ecosystem. Moreover, the experimental dynamical behavior of two competing bacterial populations in a meat product and the probability distribution at long times of one of them are well reproduced by a stochastic microbial predictive model.Comment: 23 pages, 8 figures; to be published in Math. Model. Nat. Phenom. (2016

    Environment reporters and U.S. journalists: A comparative analysis

    Get PDF
    This study provides baseline data regarding environment reporters in the twenty-first century, and then compares this baseline information about a specialized journalism beat to existing studies of U.S. journalists in general. This comparison between 652 environmental journalists working at daily newspapers and television stations and more than 1,000 U.S. journalists in general found that these reporters share many individual and work-related characteristics, perhaps due in part to their similar backgrounds and to the basic professional training received by most journalists. The authors propose a uniform theory of journalism education, arguing that journalists are journalists first because they are linked by their studies, training, and experience, and that differences among reporters may be related to variations in their education. The researchers also found that newspapers employ more specialized reporters than do television stations, and that the bigger the newspaper, the more specialists, suggesting that bigger is better for specialized reporting

    Wrestling with objectivity and fairness: U.S. environment reporters and the business community

    Get PDF
    Environment reporters have been criticized for allegedly having an antibusiness bias. This study, based on a series of regional surveys including 364 U.S. environment reporters, found the journalists commonly used a business or economics framework for their stories. The reporters used some business organizations as sources more often than some environmental groups. They acknowledged the need to be fair to both corporations and environmental activists. Nevertheless, a substantial minority of these environment reporters said they struggled with the issue of whether their peers are “too green.

    Dressed emitters as impurities

    Get PDF
    Dressed states forming when quantum emitters or atoms couple to a photonic bath underpin a number of phenomena and applications, in particular nonradiating effective interactions occurring within photonic bandgaps. Here, we present a compact formulation of the resolvent-based theory for calculating atom-photon dressed states built on the idea that the atom behaves as an effective impurity. This establishes an explicit connection with the standard impurity problem in condensed matter. Moreover, it allows us to formulate and settle - independently of the bath Hamiltonian - a number of properties previously known only for specific models or not entirely formalized. The framework is next extended to the case of more than one emitter, which is used to derive a general expression of dissipationless effective Hamiltonians explicitly featuring the overlap of single-emitter dressed bound states

    Telomeres, NAFLD and chronic liver disease

    Get PDF
    Telomeres consist of repeat DNA sequences located at the terminal portion of chromosomes that shorten during mitosis, protecting the tips of chromosomes. During chronic degenerative conditions associated with high cell replication rate, progressive telomere attrition is accentuated, favoring senescence and genomic instability. Several lines of evidence suggest that this process is involved in liver disease progression: (a) telomere shortening and alterations in the expression of proteins protecting the telomere are associated with cirrhosis and hepatocellular carcinoma; (b) advanced liver damage is a feature of a spectrum of genetic diseases impairing telomere function, and inactivating germline mutations in the telomerase complex (including human Telomerase Reverse Transcriptase (hTERT) and human Telomerase RNA Component (hTERC)) are enriched in cirrhotic patients independently of the etiology; and (c) experimental models suggest that telomerase protects from liver fibrosis progression. Conversely, reactivation of telomerase occurs during hepatocarcinogenesis, allowing the immortalization of the neoplastic clone. The role of telomere attrition may be particularly relevant in the progression of nonalcoholic fatty liver, an emerging cause of advanced liver disease. Modulation of telomerase or shelterins may be exploited to prevent liver disease progression, and to define specific treatments for different stages of liver disease
    • …
    corecore