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Abstract. The dynamics of a spatially extended system of two competing species in the presence of two
noise sources is studied. A correlated dichotomous noise acts on the interaction parameter and a multiplica-
tive white noise affects directly the dynamics of the two species. To describe the spatial distribution of the
species we use a model based on Lotka-Volterra (LV) equations. By writing them in a mean field form, the
corresponding moment equations for the species concentrations are obtained in Gaussian approximation.
In this formalism the system dynamics is analyzed for different values of the multiplicative noise intensity.
Finally by comparing these results with those obtained by direct simulations of the time discrete version of
LV equations, that is coupled map lattice (CML) model, we conclude that the anticorrelated oscillations
of the species densities are strictly related to non-overlapping spatial patterns.

PACS. 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion – 05.45.-a
Nonlinear dynamics and nonlinear dynamical systems – 87.23.Cc Population dynamics and ecological
pattern formation

1 Introduction

The dynamics of real ecosystems is strongly affected by
the presence of noise sources, such as the random vari-
ability of temperature, resources and in general environ-
ment, with which the system has a multiplicative inter-
action [1,2]. In this paper we analyze the time evolution
of a spatially extended system formed by two competing
species in the presence of two noise sources. We get the
dynamics in the formalism of the moments. We study the
role of the two noise sources on the ecosystem dynamics,
described by generalized Lotka-Volterra equations in the
presence of external fluctuations, modelled as multiplica-
tive noise. Specifically we focus on the time behavior of
the 1st and 2nd order moments of the species concentra-
tions. We find that the 1st order moments are indepen-
dent on the multiplicative noise intensity. On the other
hand the behavior of the 2nd order moments is strongly
affected by the presence of a source of external noise. We
find anticorrelated time behavior of the species densities.
Comparing our results with those obtained by calculating
the same quantities within a coupled map lattice (CML)
model [3], we conclude that the anticorrelated oscillations
of the species concentrations are strictly related to non-
overlapping spatial patterns [4]. Our theoretical results
could match data from a real ecosystem, whose dynamics
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is affected by the random variability of the environment,
and could provide useful tools to predict behavior of bio-
logical species [1,2,4,5].

2 The model

Our system is described by a time evolution model of
Lotka-Volterra equations, within the Ito scheme, with dif-
fusive terms in a spatial lattice with N sites

ẋi,j = µxi,j(1 − xi,j − βyi,j) + xi,j
√

σxξx
i,j

+D
∑

γ

(xγ − xi,j) (1)

ẏi,j = µyi,j(1 − yi,j − βxi,j) + yi,j
√

σyξy
i,j

+D
∑

γ

(yγ − yi,j), (2)

where xi,j and yi,j denote respectively the densities of
species x and species y in the lattice site (i, j), µ is the
growth rate, D is the diffusion constant, and

∑
γ indicates

the sum over all the sites. Here ξx
i,j(t) and ξy

i,j(t) are statis-
tically independent Gaussian white noises with zero mean
and unit variance, σx and σy are the intensities of the
multiplicative noise which models the interaction between
the species and the environment, and β is the interaction
parameter.
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Fig. 1. Time evolution of the interaction parameter β(t) with initial value β(0) = 1.04 and different values of delay: τd = 10 (a),
43.5 (b), and 80 (c). The values of the other parameters are: A = 9.0, ω/(2π) = 10−2, γ0 = 2 × 10−2.

2.1 The interaction parameter

Depending on the value of the interaction parameter,
coexistence or exclusion regimes take place. Namely for
β < 1 both species survives, while for β > 1 one of the
two species extinguishes after a certain time. These two
regimes correspond to stable states of the Lotka-Volterra’s
deterministic model [4,6–8]. Moreover periodical and ran-
dom driving forces connected with environmental and cli-
matic variables, such as the temperature, modify the dy-
namics of the ecosystem, affecting both directly the species
densities and the interaction parameter. This causes the
system dynamics to change between coexistence (β < 1)
and exclusion (β > 1) regimes. To describe this dynam-
ical behavior we consider as interaction parameter β(t)
a dichotomous stochastic process, whose jump rate is a
periodic function γ(t)

γ(t) =
{

0, ∆t ≤ τd

γ0 (1 + A | cosωt|) , ∆t > τd .
(3)

Here ∆t is the time interval between two consecutive
switches, and τd is the delay between two jumps, that
is the time interval after a switch, before another jump
can occur. In equation (3), A and ω = (2π)/T are re-
spectively the amplitude and the angular frequency of the
periodic term, and γ0 is the jump rate in the absence of
periodic term. This causes β(t) to jump between two val-
ues, βdown < 1 and βup > 1, which correspond to the
dynamical regimes of the deterministic Lotka-Volterra’s
model (coexistence and exclusion regions). Because the
dynamics of the species strongly depends on the value
of the interaction parameter, we report in Figure 1 the
time series of β(t) for different values of delay τd, namely
τd = 10, 43.5, 80, with βdown = 0.94 and βup = 1.04. We
note that the correlation time τd of the dichotomous noise
affects the switch time between the two levels of β(t).
For a delay time a bit less than T/2, we observe a syn-
chronization between the jumps and the periodicity of the
rate γ(t). This synchronization phenomenon is due to the
choice of the τd value, which stabilizes the jumps in such
a way they happen for high values of the jump rate, that
is for values around the maximum of the function γ(t).
This causes a quasi-periodical time behavior of the species
concentrations x and y, which can be considered as a sig-
nature of the stochastic resonance phenomenon [9] in pop-
ulation dynamics [6–8]. Therefore we fix the delay at the

value τD = 43.5, corresponding to a competition regime
with β switching quasi-periodically from coexistence to
exclusion regions (see Fig. 1b).

3 Mean field model

In this section we derive the moment equations for our
system. Assuming N → ∞, we write equations (1) and (2)
in a mean field form

ẋ = fx(x, y) +
√

σxgx(x)ξx + D(〈x〉 − x), (4)
ẏ = fy(x, y) +

√
σygy(y)ξy + D(〈y〉 − y), (5)

where 〈x〉 and 〈y〉 are average values on the spatial lattice
considered (strictly speaking they are the ensemble aver-
age in the thermodynamics limit) and we set fx(x, y) =
µx(1 − x − βy), gx(x) = x, fy(x, y) = µy(1 − y − βx),
gy(y) = y. By site averaging equations (4) and (5), we
obtain

〈ẋ〉 = 〈fx(x, y)〉, (6)
〈ẏ〉 = 〈fy(x, y)〉. (7)

By expanding the functions fx(x, y), gx(x), fy(x, y), gy(y)
around the 1st order moments 〈x〉 and 〈y〉, we get an in-
finite set of simultaneous ordinary differential equations
for all the moments [10]. To truncate this set we apply a
Gaussian approximation, for which the cumulants above
the 2nd order vanish. Therefore we obtain

〈ẋ〉 = µ〈x〉(1 − 〈x〉 − β〈y〉) − µ(βµ11 + µ20) (8)
〈ẏ〉 = µ〈y〉(1 − 〈y〉 − β〈x〉) − µ(βµ11 + µ02) (9)
µ̇20 = 2µµ20 − 2Dµ20 − 2µβ〈y〉µ20

−2µ〈x〉(βµ11 + 2µ20) + 2σx(〈x〉2 + µ20) (10)
µ̇02 = 2µµ02 − 2Dµ02 − 2µβ〈x〉µ02

−2µ〈y〉(βµ11 + 2µ02) + 2σy(〈y〉2 + µ02) (11)
µ̇11 = 2µµ11 − 2Dµ11 − 〈x〉[2µµ11 + µβ(µ11 + µ02)]

−〈y〉[2µµ11 + µβ(µ11 + µ20)], (12)

where µ20, µ02, µ11 are the 2nd order central moments
defined on the lattice

µ20 = 〈x2〉 − 〈x〉2 (13)
µ02 = 〈y2〉 − 〈y〉2 (14)
µ11 = 〈xy〉 − 〈x〉〈y〉. (15)
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Fig. 2. Time evolution of the 1st and 2nd order moments. The time series of (a) 〈x(t)〉 and 〈y(t)〉, and (b) µ20 and µ02

respectively, are completely overlapped. The values of the multiplicative noise intensity are: σ = 0, 10−12, 10−6, from top to
bottom. Here τd = 43.5, µ = 2, and D = 0.05. The initial values of the moments are 〈x(0)〉 = 〈y(0)〉 = 0.1, µ20(0) = µ02(0) =
µ11(0) = 0. The values of the other parameters are the same of Figure 1.

In order to get the dynamics of the two species we ana-
lyze the time evolution of the 1st and 2nd order moments
according to equations (8)–(12). We fix the delay time
at the value τd = 43.5, corresponding to a quasi-periodic
switching between the coexistence and exclusion regimes,
and we obtain the time series of the moments for two val-
ues of the multiplicative noise intensity σ = σx = σy,
namely σ = 10−12, 10−6, and in the absence of it. The
values of the parameters are µ = 2, D = 0.05. The ini-
tial values of the moments are 〈x(0)〉 = 〈y(0)〉 = 0.1,
µ20(0) = µ02(0) = µ11(0) = 0. These initial conditions
correspond to uniformly distributed species on the lattice
considered. In Figure 2 we note that the 1st order mo-
ments of both species oscillate together quasi regularly
around 0.5, independently on the multiplicative noise in-
tensity (see Fig. 2a). The noise intensity affects strongly
the dynamics of the 2nd order moments. In the absence of
noise µ20, µ02, µ11 are zero. For very low levels of multi-
plicative noise (σ = 10−12) quasi-periodical oscillations
appear with the same frequency of the interaction pa-
rameter β(t), because the noise breaks the symmetry of

the dynamical behavior of the 2nd order moments (see
Fig. 2b) [7]. The time behavior of the variances of x and y
species coincides all the time with alternating periods,
characterized by small (close to zero) and large values.
However the negative values of the correlation µ11 indicate
that the two species distributions are anti-correlated. This
means that the spatial distribution in the lattice will be
characterized by zones with a maximum of concentration
of species x and a minimum of concentration of species y
and vice versa. The two species will be distributed there-
fore in non-overlapping spatial patterns. This physical pic-
ture is in agreement with previous results obtained with
a different model [8]. For higher levels of multiplicative
noise (σ = 10−6) the amplitude of the oscillations in-
creases both in µ20, µ02 and µ11. This gives information
on the probability density of both species, whose width
and mean value undergo the same oscillating behavior.
The anti-correlated behavior is enhanced by increasing the
noise intensity value (see Fig. 2b). We note that the am-
plitude of the oscillations in Figure 2b increases with the
noise intensity σ and it is of the same order of magnitude.
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The periodicity of these noise-induced oscillations shown
in Figure 2 is the same of the interaction parameter β(t)
(see Fig. 1). Even if it is due to a very different mechanism,
this behavior is similar to the stochastic resonance effect
produced in population dynamics, when the interaction
parameter is subjected to an oscillating bistable potential
in the presence of additive noise [7,8]. We note that in
the absence of external noise (σ = 0) both populations
coexist and the species densities oscillate in phase around
their stationary value [7]. This occurs identically in each
site of the spatial lattice. The behavior of the mean value
therefore will reproduce this situation. For σ �= 0, anticor-
related oscillations appear due to the multiplicative noise,
superimposed to the average behavior obtained for σ = 0
and distributed randomly in the spatial structure. By site
averaging these noise-induced oscillations (see Ref. [7]) we
recover the average behavior obtained in the absence of
noise. This explains why the first moment behavior is in-
dependent on the external noise intensity.

4 Coupled map lattice model

In order to check our results we consider a different
approach to analyze the dynamics of our spatial ex-
tended system. We consider the time evolution of CML
model, which is the discrete version of the Lotka-Volterra
equations with diffusive terms. For this model we found
anticorrelated spatial patterns of the two competing
species [8], that are related to the dynamical behavior of
the moments of the species densities. Here we calculate
the moments in the CML model. Within this formalism,
the dynamics of the spatial distribution of the two species
is given by the following equations

x
(n+1)
i,j = µx

(n)
i,j (1 − x

(n)
i,j − β(n)y

(n)
i,j )

+
√

σxx
(n)
i,j ξ

x(n)
i,j + D

∑

γ

(x(n)
γ − x

(n)
i,j ), (16)

y
(n+1)
i,j = µy

(n)
i,j (1 − y

(n)
i,j − β(n)x

(n)
i,j )

+
√

σyy
(n)
i,j ξ

y(n)
i,j + D

∑

γ

(y(n)
γ − y

(n)
i,j ), (17)

where x
(n)
i,j and y

(n)
i,j denote respectively the densities of

prey x and prey y in the site (i, j) at the time step n, µ

is the growth rate and D is the diffusion constant. ξ
x(n)
i,j

and ξ
y(n)
i,j are independent Gaussian white noise sources

with zero mean and unit variance. The interaction pa-
rameter β(n) corresponds to the value of β(t) taken at the
time step n, according to equation (3). Here

∑
γ indicates

the sum over the four nearest neighbors. To evaluate the
1st and 2nd order moments we define on the lattice, at
the time step n, the mean values 〈x〉(n)

CML
, 〈y〉(n)

CML
,

〈z〉(n)
CML

=

∑
i,j z

(n)
i,j

N
, z = x, y (18)

the variances var(n)
x , var(n)

y

var(n)
z =

√
s
(n)
z =

√∑
i,j(z

(n)
i,j − 〈z〉(n)

CML)2

N
, z = x, y

(19)
and the correlation coefficient corr(n) of the two species

corr(n) =
cov(n)

xy

s
(n)
x s

(n)
y

, (20)

with

cov(n)
xy =

∑
i,j(x

(n)
i,j − 〈x〉(n)

CML
)(y(n)

i,j − 〈y〉(n)
CML

)
N

. (21)

The number of lattice sites is N = 100 × 100. The time
behavior of these quantities, for two levels of the mul-
tiplicative noise and in the absence of it, is reported
in Figure 3. The 1st and 2nd order moments given by
equations (18), (19), (21) correspond respectively to the
same quantities shown in Figure 2. We note that the
two set of time series are in a good qualitative agree-
ment. The discrepancies in the oscillation intensities are
due to the different values of the stationary values of the
species densities in the considered models. Specifically:
xst = yst = α/(1+β) � 0.5 for the mean field model, and
x

(n)
st = y

(n)
st = (1 − 1/µ)/(1 + β(n)) � 0.25 for the CML

model. Moreover the behavior of the 2nd order moments
in Figure 3b shows little irregularities with respect to that
obtained in the mean field model, because the species in-
teraction in the CML model is restricted to the nearest
neighbors.

5 Conclusions

We report a study on the dynamics of a spatially ex-
tended ecosystem of two competing species, described by
generalized Lotka-Volterra equations. Two noise sources
are present: a multiplicative white noise, which affects
directly the two species densities, and a correlated di-
chotomous noise, which produces a random interaction
parameter whose values jump between two levels. The
role of the dichotomous correlated noise is to control
the dynamical regime of the ecosystem (see Fig. 1),
while the multiplicative noise is responsible for the an-
ticorrelated behavior of the species concentrations (see
time behavior of µ11 in Fig. 2b and covxy in Fig. 3b).
The anti-correlated oscillations are enhanced by increas-
ing the multiplicative noise intensity. The mean field
approach with the Gaussian approximation enables us to
obtain the time behavior of the 1st and 2nd order mo-
ments, which characterize the spatio-temporal behavior
of the ecosystem. We compare the results obtained within
a mean field approach with those obtained with a CML
model. The agreement is quite good and allows us to con-
clude that the spatial patterns of the two species, within
the mean field approach, should be non-overlapping as
those obtained with the CML model [8]. Our theoretical
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Fig. 3. (a) Mean values: 〈x〉CML , 〈y〉CML , and (b) variances: varx, vary and covxy of the two species, as a function of time.
The values of the multiplicative noise intensity are: σ = 0, 10−12, 10−6, from top to bottom. The initial values of the species

concentrations are x
(0)
i,j = y

(0)
i,j = 0.1 for all sites (i, j). The values of the other parameters are the same of Figure 2.

results could explain the time evolution of populations in
real ecosystems whose dynamics is strictly dependent on
noise sources, which are always present in the natural en-
vironment [5,11,12].
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