
Math. Model. Nat. Phenom.
Vol. 11, No. 5, 2016, pp. 158–174

DOI: 10.1051/mmnp/201611510

Noise Induced Phenomena in the Dynamics of Two
Competing Species

D. Valenti1∗, A. Giuffrida2, G. Denaro1, N. Pizzolato1, L. Curcio1, S. Mazzola5, G.
Basilone5, A. Bonanno5, B. Spagnolo1,3,4
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Abstract. Noise through its interaction with the nonlinearity of the living systems can give rise
to counter-intuitive phenomena. In this paper we shortly review noise induced effects in different
ecosystems, in which two populations compete for the same resources. We also present new re-
sults on spatial patterns of two populations, while modeling real distributions of anchovies and
sardines. The transient dynamics of these ecosystems are analyzed through generalized Lotka-
Volterra equations in the presence of multiplicative noise, which models the interaction between
the species and the environment. We find noise induced phenomena such as quasi-deterministic
oscillations, stochastic resonance, noise delayed extinction, and noise induced pattern forma-
tion. In addition, our theoretical results are validated with experimental findings. Specifically
the results, obtained by a coupled map lattice model, well reproduce the spatial distributions of
anchovies and sardines, observed in a marine ecosystem. Moreover, the experimental dynamical
behavior of two competing bacterial populations in a meat product and the probability distri-
bution at long times of one of them are well reproduced by a stochastic microbial predictive
model.
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1. Introduction

During last years, theoreticians worked to devise deterministic mathematical models able to describe
ecosystems in which chaotic dynamics and spatial patterns are present. However, due to their deterministic
nature these models cannot reproduce or explain the effects of random fluctuations, which come from the
intrinsic stochastic nature of open systems. Natural systems indeed are a typical example of open systems
due to the continuous presence of deterministic and stochastic forces coming from the environment, which
affect the dynamics of these systems.

More recently, the role of noise in population dynamics has been the subject of several theoretical
studies [6, 11, 20–22, 24, 25, 27, 30, 41, 42, 44, 49, 50, 62–64, 67, 69, 70, 72, 76, 77, 86, 88, 89, 93]. Thus the
study of the effects of noise is now a well established subject in several different disciplines ranging
from physics, to chemistry and biology [36, 52, 58, 60, 87]. However, the essential role of the noise in
theoretical ecology has been recently recognized. Some key questions in population ecology are related to
the comprehension of the role that noise, climatic forcing and nonlinear interactions among individuals
of the same or different species play on the dynamics of the ecosystems [11, 24, 25, 27, 86, 93]. Recently
researchers devoted more interest and attention to explain the role of noise in different fields of biology [6,
10,16,19,21,22,29,32,33,39,41,43,44,68,80,84,89], while investigating noise induced effects in population
dynamics [20,49,50,69,70,72].

In particular several works have studied the effects of random fluctuations on the stability of ecological
systems [11,93], showing the presence of counterintuitive phenomena, such as noise enhanced stability [1,
28, 55, 73, 74], stochastic resonance [32, 34, 51, 54, 56], and noise delayed extinction [20, 49, 69–71,81]. The
origin of these effects is the interplay between nonlinear interactions typical for natural systems and
random fluctuations coming from environment due to their intrinsic characteristic of open systems. The
permanent presence of noise and nonlinear interaction in population dynamics causes indeed an increase
of complexity compared to other noise-driven systems, such as financial markets [14, 15, 75, 83], or many
physical and chemical processes described by deterministic dynamics [68].

Therefore the intrinsic nonlinearity can cause ecological systems to critically depend on initial condi-
tions, and both deterministic and random perturbations coming from the environment. As a consequence,
the understanding of the role played by the noise in the dynamics of nonlinear systems is a crucial point
for a deeper comprehension and successful modeling of the open systems governed by nonlinear dynamics,
which are known as complex systems.

Moreover we recall that the study of spatial distributions of species densities is a major element to get a
correct description in population dynamics. An accurate analysis of spatio-temporal patterns represents in
fact a crucial point to devise predictive models. As a consequence the comprehension of the role played by
the simultaneous presence of random fluctuations, deterministic forces and nonlinear interaction, typical
for natural systems, is fundamental to effectively describe the spatio-temporal dynamics of biological
populations [12,20,48,49,66,69,70,72,92]. Thus, a deeper comprehension of the role of random fluctuations
in ecology underlies a better knowledge and description of real natural systems. Nevertheless, despite of
the big amount of theoretical work and effort of researchers, a relevant biological issue such as the role
of environmental noise in ecological systems is still widely debated.

For this purpose, we discuss here the effects of environmental noise on the dynamics of biological
populations. In particular, we review some recent findings obtained for two competing species, whose
dynamics is described by generalized Lotka-Volterra equations, and highlight the crucial role of the
environmental noise on the dynamics of the two species. Moreover we present new results (see Section 3),
obtained by a coupled map lattice model, which reproduce the spatial distributions of two fish populations,
i.e. anchovies and sardines. Our analysis focus on three different ecosystems, in which external random
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fluctuations are modeled by terms of multiplicative noise [6, 21, 22]. As a result we find that: (a) in a
single compartment ecosystem the presence of a driving force causes stochastic resonance, which results
in quasi-periodic oscillations of the two population densities; b) in the same ecosystem it is possible to
observe a nonmonotonic behavior of the average extinction time of one species as a function of the noise
intensity, i.e. noise delayed extinction; (c) a two-dimensional spatio-temporal model is able to reproduce
the concentrations of two fish species in a real marine ecosystem located in the Mediterranean Sea; (d)
in a food product the presence of randomly fluctuating environmental variables such as temperature,
pH, and available water is taken into account in modeling the growth of two bacterial populations, while
allowing to obtain a better agreement between experimental data and theoretical results compared to the
corresponding deterministic approach.

2. Stochastic dynamics of two competing species: single compartment model

In this section we study the effect of random fluctuations in the dynamics of two competing species. The
model consists of generalized Lotka-Volterra equations with terms of multiplicative noise, which mimics
the random fluctuations of environmental variables. The two populations, x and y, interact through the
term −βxy, where β is the coupling constant, which regulates the interaction strength and is a stochastic
process. More in detail the interaction coefficient β(t) can be represented as a virtual particle moving
along a bistable potential and subject to both a periodic driving term, which models seasonal changes in
temperature, and a term of additive noise which describes the effects due to the noisy behaviour of the
environment.

2.1. The model

The stochastic dynamics of our ecosystem is given by the two following generalized Lotka-Volterra
equations [53,90]

dx

dt
= µ1 x (α1 − x− β1(t)y) + x ξx(t) (2.1)

dy

dt
= µ2 y (α2 − y − β2(t)x) + y ξy(t), (2.2)

which are stochastic differential equations in Ito sense, with ξx(t) and ξy(t) statistically independent
Gaussian white noises with zero mean and correlation function 〈ξi(t)ξj(t′)〉 = σδ(t − t′)δij (i, j = x, y),
and σ the multiplicative noise intensity. To get the time evolution for the two species densities the
parameters are set as follows: α1 = α2 = α, β1(t) = β2(t) = β(t). We recall that β < 1 determines the
coexistence regime (both species survives), while β > 1 corresponds to the exclusion regime (one of the
two species disappears after some time). Coexistence and exclusion of one of the two species represent
indeed stable states of the Lotka-Volterra’s deterministic model [7]. As previously said, natural systems
are affected by a continuous exchange with a noisy nonstationary environment. This implies that also the
interaction parameter is subject to both random fluctuations and deterministic external signal such as
the periodical changes in temperature. The competition rate β(t), continuously varying between exclusion
and coexistence regime due the interplay between two main factors such as limiting resources and noisy
environment, is responsible for a random competition between the two populations. As a consequence, the
simultaneous presence of noise and periodic driving causes the system to pass from a dynamical regime
(β < 1, coexistence) to the other one (β > 1, exclusion) and vice versa. This random process can be
described by an Ito stochastic differential equation, which reproduces, as previously noted, the dynamics
of a virtual particle moving along a bistable potential, in the presence of a periodical driving force and
an additive noise term

dβ(t)

dt
= −dU(β)

dβ
+ γcos(ω0t) + ξβ(t), (2.3)
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Figure 1. The bistable potential U(β) of the interaction parameter β(t). The potential U(β) is
centered on β = 0.99. The parameters of the potential are h = 6.25 · 10−3, η = 0.05, ρ = −0.01.

where U(β) is the bistable potential shown in Fig. 1 and given by

U(β) = h(β − (1 + ρ))4/η4 − 2h(β − (1 + ρ))2/η2, (2.4)

Here h is the height of the potential barrier. The periodic term account for seasonal variations of envi-
ronmental temperature, with γ = 10−1 and ω0/(2π) = 10−3. In Eq. (2.3) ξβ(t) is a Gaussian white noise
with the usual statistical properties 〈ξβ(t)〉 = 0 and 〈ξβ(t)ξβ(t′)〉 = σβδ(t− t′), with σβ the additive noise
intensity. According to the form of the potential, one can expect that in the deterministic case (σβ = 0)
the coexistence regime takes place when the virtual particle (initial value of β) is placed in the left well.

2.2. Stochastic resonance

As a first step we study how the noise affects the dynamics of the two populations, whose dynamical
regime is strongly dependent on the interaction parameter. Therefore we analyze the time evolution
of β(t) fixing different values of the additive noise intensity. Setting σβ = 0 (deterministic regime),
β(t) undergoes a periodical behavior with the system remaining in the coexistence regime (see Fig. 2a).
Increasing the noise (σβ � h) the periodical behavior appears slightly perturbed due to the presence of
random fluctuations (Fig. 2c). As the noise intensity increases (σβ ' h), the virtual particle, i.e. the value
of the interaction parameter, jumps between β = 0.94 and β = 1.04, which corresponds to the coexistence
(β < 1) and exclusion regime (β > 1), respectively. In Fig. 2b the typical picture of stochastic resonance
is shown. However, for higher values of the noise intensity σβ , a loss of coherence is observed and the
system dynamics is mainly driven by the source of random fluctuations (see Fig. 2d). This behavior can
be interpreted as a cooperation between the periodical driving of the temperature, due to some geological
cause, and the environmental noise [3, 8, 9] for intermediate values of the noise intensity. In this case the
noise results to be tuned with the deterministic oscillating external perturbation, causing the well known
stochastic resonance phenomenon. The noise intensity, σβ = 1.78 ·10−3, which causes the synchronization
shown in Fig. 2c, can be easily obtained by the formula [45,46] setting

τk = T0/2, (2.5)
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(c) (d)

(a) (b)

Figure 2. Time evolution of the interaction parameter for different values of the additive noise
intensity. (a) σβ = 0; (b) σβ = 1.78 ·10−4; (c) σβ = 1.78 ·10−3; (d) σβ = 1.78 ·10−2. The values
of the parameters are γ = 10−1, ω0/(2π) = 10−3.

where τk is the Kramers time [40]

τk =
2π√

|U ′′(0.99)|U ′′(0.94)
exp [2h/σβ ], (2.6)

and T0 is the period of the driving force. In Eq. (2.6) U ′′(0.99) and U ′′(0.94) are the second derivative
calculated in the unstable and stable states of the potential, respectively. Setting σβ = 1.78 · 10−3, which
gives an alternated regime with quasi-periodical jumps between coexistence and exclusion, it is possible
to get the ecosystem dynamics when the stochastic resonance (SR) condition is present, varying the
magnitude σ of the multiplicative noise sources which act directly on the two species. Using as initial
conditions x(0) = y(0) = 1, we note that, after a short transient, both populations take on the same
stationary value xst = yst = α/(1 + β) ≈ 1/2, around which the population densities perform quasi-
periodic oscillations whose amplitudes depend on the magnitude of the multiplicative noise.

We observe that in the absence of multiplicative noise, i.e. σ = 0 (see Fig. 3a), and for low noise inten-
sity, i.e. σ = 10−12 (see Fig. 3b), a dynamical coexistence regime characterized by correlated oscillations
of the two species densities is established. We observe that this behaviour is connected with the symme-
try of the Lotka-Volterra equations due to the choice of the parameter values and initial conditions (the
same for the two populations). As a consequence the species undergoes correlated oscillations around the
stationary value α/(1 + β) (see panels a, b of Fig. 3), even if the ecosystem, driven by the quasi-periodic
behaviour of the interaction parameter (SR effect), is in the exclusion regime during the 50% of the time.

The symmetry condition is broken as the multiplicative noise intensity increases, causing the appear-
ance of anti-correlated oscillations (see panels c, d, e of Fig. 3). The amplitude of these anti-correlated
oscillations increases for higher intensity of the multiplicative noise (σ = 10−2), causing a degradation of
the quasi-periodical behaviour in the time series of the populations (see Fig. 3f): now the ecosystem is
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Figure 3. Time evolution of both populations at different levels of the multiplicative noise: (a)
σ = 0; (b) σ = 10−11; (c) σ = 10−10; (d) σ = 10−9; (e) σ = 10−4; (f) σ = 10−1. The values of
the parameters are µ = 1, α = 1, γ = 10−1, ω0/2π = 10−3. The intensity of the additive noise
is fixed at the value σβ = 1.78 · 10−3. The initial values of the two species are x(0) = y(0) = 1.

mainly driven by the noise which tends to suppress the effect of the periodical signal. The presence of the
multiplicative noise indeed breaks the symmetric dynamical behaviour of the ecosystem. For β > 1, i. e. in
the exclusion regime, this symmetry breaking determines different behaviour in the time series of the two
species: one tends to survive, while the other one tends to extinguish. Fig. 3 indicates that the effect of
quasi-periodic signal can be amplified by higher intensities of the multiplicative noise. The periodicity of
the noise-induced oscillations in the time behavior of the population densities shown in Fig. 3e is the same
of the driving periodic term of Eq.(2.3). This is the signature of stochastic resonance phenomenon. This
second SR phenomenon can be quantitatively investigated calculating the signal-to-noise ratio (SNR) of
the squared difference of population densities. More exactly we consider the time series [x(t) − y(t)]2

at different values of the noise intensity σ, and calculate the SNR according to Ref. [2]. This quantity is
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Figure 4. Log-Log plot of SNR as a function of the multiplicative noise intensity. The SNR
corresponds to the squared difference of population densities (x− y)2. The values of the param-
eters are the same of Fig. 3.

shown in Fig. 4 as a function of the multiplicative noise intensity σ, for σβ = 1.78 · 10−3. We note that a
maximum is found for σ = 10−4. This indicates that the additive noise determines the conditions for the
different dynamical regimes of the two species, while the multiplicative noise is responsible for a coherent
response of the system, breaking the initial condition of symmetry of the ecosystem.

2.3. Noise delayed extinction

In this section we study how one of the two populations can vanish due to the interplay between
the periodical signal and the additive noise ξβ(t), which drive the ecosystem through the two different
regimes, i.e. coexistence and exclusion.

For this purpose we introduce the average extinction time of one species and calculate it for different
values of the noise intensity σβ , setting the multiplicative noise intensity at a small value, so that the
dynamics is weakly perturbed by the noise and the ecosystem remains far from the SR regime. Fixing
σ = 10−9 and β(0) = 0.94 as initial condition, we integrate Eqs. (1) and (2) by performing 200 numerical
realizations, and obtaining the behaviour of the mean extinction time (MET) of one species as a function
of the additive noise intensity σβ (see Fig. (5a)).

In these conditions, for σβ = 0, the ecosystem remains in the coexistence regime, that is the determin-
istic extinction time of both species is infinite. By introducing noise, exclusion takes place and a finite
mean extinction time (MET) appears.

We note that for small and large values of the additive noise intensity (see regions 1 and 3 in Fig. 5a), the
system is in a dynamical regime which favours the coexistence of the two species, so that no extinction
occurs (see time series shown in panels b and d of Fig. 5). Conversely, for intermediate values of σβ ,
exclusion of one species is found with different extinction times. In particular, a minimum MET is
observed for σβ = 2.75 · 10−3, which is of the same order of magnitude of the potential barrier height h.
The Kramers time corresponding to this noise intensity is τk = 41.6, a value approximately equal to τmin.
This behaviour reproduces the effect of random modifications of the environmental conditions responsible
for the delayed extinction of biological species in real ecosystems, as it is observed in experimental data
of populations in a very long time interval [18, 35]. Starting from a situation in which one of the two
population undergoes rapidly extinction (region 2 in Fig. 5a), varying the noise intensity (decrease or
increase of σβ) the ecosystem moves towards regions where the MET becomes larger (see the region
between 1 and 2 and that between 2 and 3 in Fig. 5a). From a physical point of view this effect can

164



D. Valenti, A. Giuffrida, G. Denaro, N. Pizzolato, L. Curcio, S. Mazzola, G. Basilone, A. Bonanno, B. Spagnolo

Noise Induced Phenomena in the Dynamics of Two Competing Species

D. Valenti et al. / Physica A 331 (2004) 477–486 483

Fig. 5. (a) Mean extinction time of one species as a function of the noise intensity ��. Time evolution of
both species for di6erent levels of additive noise; (b) �� = 10−4, (c) �� = 2× 10−3, (d) �� = 10−1. The
values of the parameters are � = 1, � = 45, � = 10−1, !0=2� = 10−3. The intensity of the multiplicative
noise is 7xed at the value � = 10−9. The initial values of the two species are x(0) = y(0) = 1.

use the bistable potential U (�) of Fig. 1 with the initial condition �(0) = 0:94. In this
condition the ecosystem is in the coexistence regime, that is the deterministic extinction
time of both species is in7nite. By introducing noise, exclusion takes place and a 7nite
mean extinction time (MET) appears. By varying the intensity of the additive noise in
Eq. (3) we obtain, of course, a variation of the average extinction time. The delayed
extinction is obtained for noise intensities ranging from the intermediate regime (2 in
Fig. 5a) to the coexistence regime obtained with higher values of � (3 in Fig. 5a).
In real ecosystems we have always a given noise intensity, which corresponds to a
7nite mean extinction time. Due to some environmental cause the noise intensity can
considerably change, as it is observed in experimental data of populations in a very long
time interval [15]. Therefore, the dynamical behavior shown in Fig. 5 should explain
such physical situations, where the variation of the environmental noise produces a
delayed extinction of some population. By increasing the noise intensity we obtain
noise delayed extinction and the average extinction time grows reaching a saturation
value, which corresponds to a situation where the potential barrier is absent. We 7nd
nonmonotonic behavior of the MET as a function of the noise intensity ��, with a
minimum value �min = 40:47 at �� = 2:75 × 10−3, which is of the same order of
magnitude of the barrier height h (see Fig. 5a). The Kramers time corresponding to

Figure 5. (a) Mean extinction time of one species as a function of the noise intensity σβ. Time
evolution of both species for different levels of additive noise: (b) σβ = 10−4, (c) σβ = 2 · 10−3,
(d) σβ = 10−1. The values of the parameters are µ = 1, α = 45, γ = 10−1, ω0/2π = 10−3. The
intensity of the multiplicative noise is fixed at the value σ = 10−9. The initial values of the two
species are x(0) = y(0) = 1.

be explained observing that for small values of σβ , the initial condition (β(0) = 0.94) is maintained
for low noise intensity (the Kramers time is very long and the virtual particle takes very long times to
cross the barrier and reach the right well corresponding to the exclusion regime). On the other side, for
higher noise intensities there is a strong decrease of the Kramers time and the values of β(t) switch very
rapidly between the two wells, determining an alternate regime coexistence/exclusion which avoids the
extinction. Conversely, for intermediate values of the additive noise intensity (see region 2 in Fig. 5), after
an initial permanence in the left well β(t) reaches the right well, where it remains for a time long enough
to cause the extinction of one of the two species (see time series shown in panel c of Fig. 5).

3. Stochastic dynamics of two competing species: spatially extended model

In this section we consider two populations, distributed in a two-dimensional spatial domain, subject
to multiplicative noise, in the presence of an external periodic signal. The multiplicative noise source
mimics the effects of random fluctuations of the environmental variables.
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3.1. The model

The spatio-temporal dynamics of the two populations is given by a discrete time evolution model,
based on the coupled map lattice (CML) approach [47], and is the discrete version of the Lotka-Volterra
equations, where diffusive terms were added [82]

xn+1
i,j = µxni,j(1− xni,j − βnyni,j) +

√
σxx

n
i,jX

n
i,j +D

∑
γ

(xnγ − xni,j) (3.1)

yn+1
i,j = µyni,j(1− yni,j − βnxni,j) +

√
σyy

n
i,jY

n
i,j +D

∑
γ

(ynγ − yni,j), (3.2)

with xni,j and yni,j densities of the two populations in the site (i,j) at the time step n. Here βn is the
interaction parameter at the same time step, µ is the growth rate, D is the diffusion constant and

∑
γ

represents the sum over the four nearest neighbors. Xn
i,j and Y ni,j are independent Gaussian random vari-

ables with zero mean and variance unit. Moreover, σx and σy are the intensities of the two multiplicative
noise sources. The interaction parameter βn is the same stochastic process β(t) as in previous section (see
Eq. (2.3)), where U(β) is the bistable potential shown in Fig. 1. Therefore, also in this spatially extended
model the switching of β(t) between the exclusion and coexistence regime occurs randomly. This mimics
the effect of the noisy environment on limiting factors such as food resources, with the periodical force
accounting for the periodical (seasonal) oscillations of temperature. According to the analysis performed
for the single compartment system, the two stable states (left and right wells of the potential U(β))
correspond to coexistence and exclusion of one of the two species of the Lotka-Volterra deterministic
model [20,49,69,70,72,81].

3.2. Results

By numerical integration of Eqs. (2.3), (3.1), (3.2) we obtain the spatio-temporal evolution of the
population densities for the two theoretical species. The results are given in Fig. 6. Here the spatial
distribution of the species x and y are shown at a certain time in the left and right panel, respectively. Light
and dark grey zones represent low and high densities, respectively. These theoretical spatial distribution
are compared with real data, for anchovies and sardines, collected along the acoustic transects tracked
by the Interdisciplinary Group of Oceanography of IAMC-CNR of Mazara del Vallo [13], during the
oceanographic campaign ”ANCHEVA ’02” in the Strait of Sicily. In particular, in Fig. 6 (left panel) the
anchovy abundance, estimated experimentally along the acoustic transects, from point 42 to point 50 is
shown. Analogously in Fig. 6 (right panel) the sardine abundance, estimated experimentally along the
same acoustic transects, is shown. White and black tracts indicate small and large values, respectively,
of anchovy and sardine abundances.
Predicted results show a good qualitative agreement with the spatial distributions observed for anchovy
and sardine abundances. In particular we find that, in the most of the transects considered, a higher
(lower) density for species x corresponds, in the same area, to a larger (smaller) anchovy abundance.
More in detail, in Fig. 6 (left panel) a good correspondence can be observed between the density of the
species x and the anchovy abundance along the segments 42-43, 43-44, 45-46, 47-48, 48-49 and 49-50,
with discrepancies appearing along the segments 44-45 and 46-47.
A similar situation is observed for species y and sardines. In particular, the spatial distributions of species
y and sardines are shown in Fig. 6 (right panel). Here a good agreement between predicted and observed
abundances can be observed along the segments 42-43, 43-44, 44-45, 45-46, 46-47, 47-48 and 49-50, with
a lack of agreement along the segment 48-49.

4. Predictive microbiology

Predictive microbiology exploits mathematical models to describe bacterial dynamics in different prod-
ucts of food industry. The models take into account the role played by environmental variables, whose
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Figure 6. Comparison between spatial distribution of species x and anchovy abundance (left
panel) and species y and sardine abundance (right panel). The values for x and y were obtained
from the model at time step n = 600. The anchovy and sardine abundances were estimated exper-
imentally along the acoustic transect, from point 42 to point 50, tracked during the oceanographic
campaign ”ANCHEVA ’02” by the Interdisciplinary Group of Oceanography of IAMC-CNR of
Mazara del Vallo. The spatial distribution of x and y are drawn by light and dark grey zones
which represent, respectively, low and high density of the two species. The values of the param-
eters are µ = 2, ν = ω0/(2π) = 0.34, γ = 10−5, σx = σy = 10−8, σβ = 10−12, D = 0.05,
β(0) = 0.95. The initial values for the spatial distributions of x and y are xiniti,j = yiniti,j = 0.5
for all sites (i, j). Concerning the experimental distributions, white and black tracts indicate,
respectively, small and large values of anchovy (left panel) and sardine (right panel) abundances
estimated experimentally during the oceanographic campaign [13].

variations can affect, sometimes dramatically, the quality and safety of the food products. Predictive
models belong to three different types: primary, secondary and tertiary [91]. The first class of models
allows to obtain the time evolution of microbial populations. The models belonging to the second type
give information on the relationship between parameters which appear in primary models, and physical
and chemical variables such as T (temperature), pH (hydrogen ion concentration), and aw (activity of
water). The third class of models puts together the primary and secondary ones, letting the evolution
of physical and chemical variables be considered, when analysis and prediction of the concentration of
spoiling or pathogen bacteria of the food are performed [23].

A well-known method for the theoretical analysis of microbial growth exploits generalized Lotka-
Volterra (LV) equations [53,90], which allow to describe the dynamics of two competing bacterial popu-
lations in different food products. A prototype model structure for mixed microbial populations in food
products was proposed by Dens et al. [26]. A similar approach indicated that experimental data for Es-
cherichia coli O157:H7 in ground beef could be well reproduced by an interspecific competition model
for two bacterial populations. In the same work the effects of random fluctuations were considered using
growth rates whose values are obtained from uniform random distributions [61]. An extensive review on
predictive microbiology showed that in general a stochastic approach provides predictions which exclude
the worst-case scenario [57]. In particular, stochastic terms were introduced to reproduce and predict
bacterial dynamics, exploiting an approach based on primary and secondary growth models [59]. More-
over other authors presented a stochastic model which interprets the bacterial growth as the average
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evolution of many cells: measured values of the growth rate for many different cells allow to describe
the theoretical growth rate used in the model as a stochastic variable with a corresponding probability
distribution [4, 5, 78].

The previous models however do not include explicitly stochastic terms in the equations of motion of
the systems analyzed. In other words, the models used in predictive microbiology are not usually based
on stochastic differential equations.

In the following we analyze how predictions for bacterial dynamics are affected by the three follow-
ing features: (i) use of differential equations (dynamical approach); (ii) presence of interactions among
bacterial populations; (iii) introduction of stochastic terms, i.e. noise sources, which mimic the random
fluctuations of environmental variables.

4.1. Bacterial growth in meat products: single compartment dynamics of two
interacting populations

In this section we introduce a model for the dynamics of two competing bacterial populations, Listeria
monocytogenes and lactic acid bacteria (LAB), present in a meat product, i.e. a traditional Sicilian salami
(Salame S. Angelo PGI (Protected Geographical Indication)) very important from the point of view of the
Italian food industry. Specifically, L. monocytogenes is a microbial agent of foodborne disease, while LAB
constitute the normal bacterial flora of the substrate. The theoretical approach is based on generalized
Lotka-Volterra (LV) equations [26, 61], in which the bacterial growth rates depend on environmental
variables, such as temperature, pH, and activity of water, whose randomly fluctuating behaviour can be
modeled by inserting terms of additive white Gaussian noise

dNLmo
dt

= µmaxLmoNLmo
QLmo

1 +QLmo

(
1− NLmo + βLmo/LAB NLAB

Nmax
Lmo

)
(4.1)

dQLmo
dt

= µmaxLmoQLmo (4.2)

dNLAB
dt

= µmaxLAB NLAB
QLAB

1 +QLAB

(
1− NLAB + βLAB/LmoNLmo

Nmax
LAB

)
(4.3)

dQLAB
dt

= µmaxLAB QLAB . (4.4)

Here, NLmo and NLAB are the population concentrations of L. monocytogenes and LAB, respectively;
µLmo and µLAB represent the maximum specific growth rates of the two populations, andNmax

Lmo andNmax
LAB

are the theoretical maximum population concentrations. The coefficients βLmo/LAB and βLAB/Lmo are
the interspecific competition parameters of LAB on L. monocytogenes and vice-versa. QLmo and QLAB
represent the physiological state of the two populations.

To solve Eqs. (4.1)–(4.4) it is necessary to set how µmaxLmo and µmaxLAB vary. This can be done by introducing
for the maximum growth rates the following secondary model

µmaxLmo = 0.14776 (T0 − 0.88) · (1− exp(0.536 (T − 41.4))) ·
√
aw − 0.923

·
√

1− 104.97−pH ·
√

1− LAC

3.79 (1 + 10pH−3.86)
104.97−pH · 350−NIT

350
(4.5)

µmaxLAB = 0.00234 (aw − 0.928) · (pH − 4.24) · (pH − 9.53) · (T − 3.63), (4.6)

obtained by a phenomenological approach (see Ref. [38] and references therein). Here, NIT is nitrite
concentration in ppm and LAC is lactic acid concentration in gl−1. The values 0.88, 41.4, 0.923, 4.97,
and 350 represent Tmin (◦C), Tmax (◦C), awmin, pHmin and NITmax, respectively. Temperature, pH,
and activity of water are described as stochastic processes. In particular, their dynamics is given by two
different contributions: (i) a linearly decreasing deterministic behaviour within a time interval of 168 h,
according to the procedure followed in the production process (a fermentation period of 7 days); (ii)
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terms of additive white Gaussian noise, which account for the presence of random fluctuations due to
environmental perturbations. By this way the following system of three stochastic differential equations
is obtained [38]

d T (t)

dt
= kT t+ ξT (t) (4.7)

d pH(t)

dt
= kpH t+ ξpH(t) (4.8)

d aw(t)

dt
= kaw t+ ξaw(t), (4.9)

where ξi(t), with i = T, pH, aw, are statistically independent Gaussian white noises with the following
properties

< ξi(t) >= 0 (4.10)

< ξi(t)ξi(t
′) >= σiδ(t− t′), (4.11)

and σi are the noise intensities. Eqs. (4.1)–(4.9) have been solved numerically within the Ito scheme, per-
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Figure 7. Theoretical growth curves for L. monocytogenes (dashed black line) and LAB
(full black line), and corresponding experimental data (black squares for L. monocyto-
genes, black circles for LAB). Vertical bars indicate the experimental errors.

forming 1000 realizations and obtaining the mean growth curves in absence of noise (σT = 0, σpH = 0,
σaw = 0). The initial concentrations of the two populations, however, have been set randomly. Specifically,
in each realization the initial values of NLmo and NLAB have been extracted from two Gaussian distribu-
tions, whose mean values and standard deviations were equal to those of the distributions experimentally
observed [37]. The results, obtained for suitable values of the interaction parameters (βLmo/LAB = 0.656,
βLAB/Lmo = 0), are shown in Fig. 7. Here we note that the theoretical curves of L. monocytogenes (dashed
black line) and LAB (full black line) fit very well the corresponding experimental data (black squares for L.
monocytogenes, black circles for LAB). This indicates that the interaction, present in the model, between
the two bacterial populations reproduces a feature of the real biological system [31,82,85]. In particular,
we note that the condition βLAB/Lmo = 0 implies the absence of any direct effects of L. monocytogenes on
the dynamics of LAB. On the other hand, the limiting effect of LAB on the growth of L. monocytogenes,
obtained for a suitable positive value of the other interaction parameter (βLmo/LAB = 0.665), determines
conditions for the coexistence of the two populations, according to empirical data [17,37,79].
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(d)(c)

(a) (b)

Figure 8. Theoretical distributions (white bars) of the L. monocytogenes concentration
at 168 hours for (a) σT = 0, σpH = 0, σaw = 0, (b) σT = 10−2, σpH = 5 · 10−4, σaw =
10−5, (c) σT = 2 · 10−1, σpH = 10−4, σaw = 1.5 · 10−4, (d) σT = 5 · 10−1, σpH = 5 · 10−4,
σaw = 10−5. Black bars represent the corresponding experimental distribution.

To analyze the role of the random fluctuations on the dynamics of the system, we solve Eqs. (4.1)–
(4.9) both in deterministic regime and for three different values of the noise intensities σT , σpH and σaw.
We obtain the theoretical probability distributions of L. monocytogenes concentration at the end of the
fermentation period (168 hours). Predicted results, together with observed data, are shown in Fig. 8.
Here, the histograms indicate that the best agreement between the theoretical distribution (white bars)
and experimental one (black bars) is observed when the bacterial dynamics is obtained for values of the
noise intensities different from zero (stochastic dynamics), and in particular for σT = 2·10−1, σpH = 10−4,
σaw = 1.5 · 10−4 (panel c). This result accords with the complex nature of the system analyzed, in which
random fluctuations of environmental variables such as temperature, pH and activity water, are present.

5. Conclusions

In this paper we reviewed some recent results on effects of noise in the dynamics of two competing
populations, whose interaction depends on a parameter β.

First we studied the dynamics of an ecosystem affected by two sources of random fluctuations: a
multiplicative noise and an additive noise. The latter induces a coherent time behavior and oscillating
time series of the two species densities. Moreover, an enhancement of the response of the system through
stochastic resonance phenomenon is observed as a function of the multiplicative noise intensity. The model
reproduces the dynamics of ecosystems subject to both deterministic oscillating changes and random
modifications of environmental variables, such as variations of temperature. This interplay between the
deterministic and random signals and the nonlinearity can determine a coherent response of the ecosystem.
Finally, additive noise causes also a delayed extinction of one of the two populations. In particular, a
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nonmonotonic behaviour of the mean extinction time, with a minimum, is found as a function of the
additive noise intensity.

Afterwards we presented links between theoretical modelling in population dynamics and species dis-
tributions in two different real ecosystems consisting of two populations.

Specifically, results obtained from a discrete time evolution model were compared with those recorded
for the spatial distributions of two pelagic fish populations, i.e. anchovies and sardines. The comparison
showed the presence of strong correlations between theoretical and experimental distributions for both
populations. These findings, previously not published, represent the novelty of the paper.

Then, we discussed a predictive microbiological model which allows to describe microbial evolution in
food products as a function of environmental conditions. Our findings indicate that interspecific bacterial
interaction and environmental random fluctuations are essential for a more precise and reliable prediction
of the bacterial dynamics.

The noise induced phenomena discussed in this paper can contribute to understand population dynam-
ics in ecosystems, which are complex systems due to their intrinsic nonlinearity and continuous exchange
with the environment through deterministic and random perturbations [11, 18, 20, 35, 49, 69, 70, 93]. In
particular, the results presented in this paper highlight the importance of including noise effects to model
more effectively the dynamics of two specific real ecosystems. Indeed our results could contribute: (i) to re-
produce the dynamics of fish populations and predict the effects of global warming on marine ecosystems,
in view of devising fishing strategies which prevent the decline of marine populations, such as sardines and
anchovies, of paramount importance for countries whose economy in strongly based on fishing activities;
(ii) to incorporate stochastic microbial predictive models into a risk assessment process, and therefore to
improve the precision of the expected concentrations of a foodborne disease agent. This aspect agrees to
the new European approach to food risk assessment and management.

Acknowledgements. Authors acknowledge the financial support by Ministry of University, Research and Education
of Italian Government, Project PON02 00451 3362121 ‘PESCATEC – Sviluppo di una Pesca Siciliana Sostenibile
e Competitiva attraverso l’Innovazione Tecnologica’, and Project PON02 00451 3361909 ‘SHELF-LIFE – Utilizzo
integrato di approcci tecnologici innovativi per migliorare la shelf-life e preservare le proprietà nutrizionali di
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