218 research outputs found

    CONTRIBUTION OF COORDINATION, BALANCE, FLEXIBILITY, ARM MUSCLE STRENGTH TO THE 'KIZAMI-GYAKU ZUKI' PUNCH: ANALYSIS OF FEMALE KARATE ATHLETES

    Get PDF
    The purpose of this research is to analyze the contribution of coordination, balance, flexibility, arm muscle strength to the kizami-gyaku zuki punch of female athletes. The background to this research is from observations of the qualifying round at the 2023 National Sports Week (PON), on average female athletes earn points from punches. This research is an analytical survey to test the contribution of the independent variables. The sample was 50 female athletes with characteristics namely age 19.8±1.2 years, training experience 8.3±0.6 years, weight 50±1.5 kg, height 160.4±1.5 cm. The tests carried out included coordination using the Hand-Wall Toss Test, balance using the Modified Bass Test of Dynamic Balance, flexibility using the sit and reach test, arm muscle strength using push up for 1 minute, kizami-gyaku zuki punches using a punching bag during 30 seconds. The results of this research show that coordination, flexibility, and arm muscle strength have an effect on kizami-gyaku zuki punches. However, balance has no effect on the kizami-gyaku zuki punches. Adjusted R Square results, the contribution from coordination (r = 0.341) or 34.1%, balance (r = 0.235) or 23.5%, flexibility (r = 0.490) or 49%, arm muscle strength (r = 0.465) or 46.5%, contribution overall against kizami-gyaku zuki punch (r = 0.674) or 67.4%. The conclusion is that it is important for trainers, athletes, and sports karate academics to focus on these four physical components so that the kumite abilities of female athletes can be improved. However, it is important to train in other physical components, such as endurance, technique and tactics and mental. Future research is expected to add variables or update the types of tests used in this research.  Article visualizations

    Microarray Analysis on Human Neuroblastoma Cells Exposed to Aluminum, β1–42-Amyloid or the β1–42-Amyloid Aluminum Complex

    Get PDF
    BACKGROUND: A typical pathological feature of Alzheimer's disease (AD) is the appearance in the brain of senile plaques made up of β-amyloid (Aβ) and neurofibrillary tangles. AD is also associated with an abnormal accumulation of some metal ions, and we have recently shown that one of these, aluminum (Al), plays a relevant role in affecting Aβ aggregation and neurotoxicity. METHODOLOGY: In this study, employing a microarray analysis of 35,129 genes, we investigated the effects induced by the exposure to the Aβ(1-42)-Al (Aβ-Al) complex on the gene expression profile of the neuronal-like cell line, SH-SY5Y. PRINCIPAL FINDINGS: The microarray assay indicated that, compared to Aβ or Al alone, exposure to Aβ-Al complex produced selective changes in gene expression. Some of the genes selectively over or underexpressed are directly related to AD. A further evaluation performed with Ingenuity Pathway analysis revealed that these genes are nodes of networks and pathways that are involved in the modulation of Ca(2+) homeostasis as well as in the regulation of glutamatergic transmission and synaptic plasticity. CONCLUSIONS AND SIGNIFICANCE: Aβ-Al appears to be largely involved in the molecular machinery that regulates neuronal as well as synaptic dysfunction and loss. Aβ-Al seems critical in modulating key AD-related pathways such as glutamatergic transmission, Ca(2+) homeostasis, oxidative stress, inflammation, and neuronal apoptosis

    Mammal prevalence after the fire catastrophe in northeastern Pantanal, Brazil

    Get PDF
    Fire might occur under natural conditions in the Pantanal of Brazil; however, with climate change, severe periods of drought potentiated the devasting fires in 2020, resulting in substantial wildlife loss. Considering that mammal communities are strongly affected by fire and habitat alterations, the aim of this study was to evaluate possible differences in mammal diversity and the number of records before and one year after the fire in one region of the Pantanal of Mato Grosso, Brazil (Parque SESC Baía das Pedras – PSBP). The data collection was performed using camera trapping between 2015 and 2017 and 2021, together with visual field observations in PSBP. We observed that the mammal assemblage composition was similar before and one year after the fire. Four species were more or less frequent in burned areas than in unburned ones. Since the fire was controlled in this area, avoiding its total destruction, and the species that fled from the surrounding areas, which were completely burnt, might be using PSBP as a refuge while the vegetation recovers elsewhere. Therefore, the PSBP might have contributed to protecting mammal species after the fire and maintaining and conserving biodiversity on a regional scale in the Pantanal of Mato Grosso, Brazil

    MICROALGAE BIOPOLYMERS: A REVIEW

    Get PDF
    Algae are ubiquitous organisms whose capabilities have drawn much attention as of late in the bioengineering field due to their potential to enable a wide range of bioproducts. Microalgae are ideal organisms for the application of the biorefinery concept since they can be grown in wastewater and, at the same time, produce many products of commercial interest. These microorganisms are also known for their resilience to extreme environmental conditions and suitable cell growth rates. Beyond the known potential for biofuel production, these microorganisms can still produce other compounds, being lipids, pigments, vitamins, proteins, and polysaccharides, whose applications go from pharmaceutical to agricultural industries. Recently, the research focus has been directed to the biopolymer-producing ability of both micro- and macroalgae, as they can be rather varied and useful to many applications. However, this is still an ongoing research field, and new data are frequently added in the literature, notably on biomass processing, which can be done with the intent of use into dyes, bioplastics, paints, and even as biochar in solid fuel cells. Microalgae-based biopolymers can be used in a wide range of products, nevertheless, the resulting process efficiency and yields depend on the extraction process utilized, as well as on the microalgae species used and the culture conditions. Furthermore, the polymer extraction can be done directly with common solvents at atmospheric pressure or with other fluids, such as supercritical CO2 or subcritical solvents, and assisted by specific treatments, e.g., ultrasound and microwave. The residual biomass can still be used to produce other less valuable products, such as feedstock, and energy via combustion. In this sense, the present work aims to provide a state-of-the-art review on microalgae biopolymers. Issues related to the efficiency of current treatment methods, industrial applications, and environmental performance are presented and discussed. Besides, the perspectives in this area of knowledge are also a contribution of the present work, the extent to which scientific research is still under development

    Improving outcomes for hospital patients with critical bleeding requiring massive transfusion: The Australian and New Zealand Massive Transfusion Registry study methodology

    Get PDF
    Background: The Australian and New Zealand (ANZ) Massive Transfusion (MT) Registry (MTR) has been established to improve the quality of care of patients with critical bleeding (CB) requiring MT (≥ 5 units red blood cells (RBC) over 4 h). The MTR is providing data to: (1) improve the evidence base for transfusion practice by systematically collecting data on transfusion practice and clinical outcomes; (2) monitor variations in practice and provide an opportunity for benchmarking, and feedback on practice/blood product use; (3) inform blood supply planning, inventory management and development of future clinical trials; and (4) measure and enhance translation of evidence into policy and patient blood management guidelines. The MTR commenced in 2011. At each participating site, all eligible patients aged ≥18 years with CB from any clinical context receiving MT are included using a waived consent model. Patient information and clinical coding, transfusion history, and laboratory test results are extracted for each patient’s hospital admission at the episode level. Results: Thirty-two hospitals have enrolled and 3566 MT patients have been identified across Australia and New Zealand between 2011 and 2015. The majority of CB contexts are surgical, followed by trauma and gastrointestinal haemorrhage. Validation studies have verified that the definition of MT used in the registry correctly identifies 94 % of CB events, and that the median time of transfusion for the majority of fresh products is the ‘product event issue time’ from the hospital blood bank plus 20 min. Data linkage between the MTR and mortality databases in Australia and New Zealand will allow comparisons of risk-adjusted mortality estimates across different bleeding contexts, and between countries. Data extracts will be examined to determine if there are differences in patient outcomes according to transfusion practice. The ratios of blood components (e.g. FFP:RBC) used in different types of critical bleeding will also be investigated. Conclusions: The MTR is generating data with the potential to have an impact on management and policy decision-making in CB and MT and provide benchmarking and monitoring tools for immediate application

    Resveratrol Acts Not through Anti-Aggregative Pathways but Mainly via Its Scavenging Properties against Aβ and Aβ-Metal Complexes Toxicity

    Get PDF
    It has been recently suggested that resveratrol can be effective in slowing down Alzheimer's disease (AD) development. As reported in many biochemical studies, resveratrol seems to exert its neuro-protective role through inhibition of β-amyloid aggregation (Aβ), by scavenging oxidants and exerting anti-inflammatory activities. In this paper, we demonstrate that resveratrol is cytoprotective in human neuroblastoma cells exposed to Aβ and or to Aβ-metal complex. Our findings suggest that resveratrol acts not through anti-aggregative pathways but mainly via its scavenging properties

    Dietary zinc supplementation of 3xTg-AD mice increases BDNF levels and prevents cognitive deficits as well as mitochondrial dysfunction

    Get PDF
    The overall effect of brain zinc (Zn2+) in the progression and development of Alzheimer's disease (AD) is still not completely understood. Although an excess of Zn2+ can exacerbate the pathological features of AD, a deficit of Zn2+ intake has also been shown to increase the volume of amyloid plaques in AD transgenic mice. In this study, we investigated the effect of dietary Zn2+ supplementation (30 p.p.m.) in a transgenic mouse model of AD, the 3xTg-AD, that expresses both β amyloid (Aβ)- and tau-dependent pathology. We found that Zn2+ supplementation greatly delays hippocampal-dependent memory deficits and strongly reduces both Aβ and tau pathology in the hippocampus. We also evaluated signs of mitochondrial dysfunction and found that Zn2+ supplementation prevents the age-dependent respiratory deficits we observed in untreated 3xTg-AD mice. Finally, we found that Zn2+ supplementation greatly increases the levels of brain-derived neurotrophic factor (BDNF) of treated 3xTg-AD mice. In summary, our data support the idea that controlling the brain Zn2+ homeostasis may be beneficial in the treatment of AD

    Carbon inputs from Miscanthus displace older soil organic carbon without inducing priming

    Get PDF
    The carbon (C) dynamics of a bioenergy system are key to correctly defining its viability as a sustainable alternative to conventional fossil fuel energy sources. Recent studies have quantified the greenhouse gas mitigation potential of these bioenergy crops, often concluding that C sequestration in soils plays a primary role in offsetting emissions through energy generation. Miscanthus is a particularly promising bioenergy crop and research has shown that soil C stocks can increase by more than 2 t C ha−1 yr−1. In this study, we use a stable isotope (13C) technique to trace the inputs and outputs from soils below a commercial Miscanthus plantation in Lincolnshire, UK, over the first 7 years of growth after conversion from a conventional arable crop. Results suggest that an unchanging total topsoil (0–30 cm) C stock is caused by Miscanthus additions displacing older soil organic matter. Further, using a comparison between bare soil plots (no new Miscanthus inputs) and undisturbed Miscanthus controls, soil respiration was seen to be unaffected through priming by fresh inputs or rhizosphere. The temperature sensitivity of old soil C was also seen to be very similar with and without the presence of live root biomass. Total soil respiration from control plots was dominated by Miscanthus-derived emissions with autotrophic respiration alone accounting for ∼50 % of CO2. Although total soil C stocks did not change significantly over time, the Miscanthus-derived soil C accumulated at a rate of 860 kg C ha−1 yr−1 over the top 30 cm. Ultimately, the results from this study indicate that soil C stocks below Miscanthus plantations do not necessarily increase during the first 7 years
    • …
    corecore