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ABSTRACT 

Algae are ubiquitous organisms whose capabilities have drawn much 

attention as of late in the bioengineering field due to their potential to 

enable a wide range of bioproducts. Microalgae are ideal organisms for the 

application of the biorefinery concept since they can be grown in 

wastewater and, at the same time, produce many products of commercial 

interest. These microorganisms are also known for their resilience to 

extreme environmental conditions and suitable cell growth rates. Beyond 

the known potential for biofuel production, these microorganisms can still 

produce other compounds, being lipids, pigments, vitamins, proteins, and 

polysaccharides, whose applications go from pharmaceutical to agricultural 

industries. Recently, the research focus has been directed to the biopolymer-

producing ability of both micro- and macroalgae, as they can be rather 

varied and useful to many applications. However, this is still an ongoing 

research field, and new data are frequently added in the literature, notably 

on biomass processing, which can be done with the intent of use into dyes, 

bioplastics, paints, and even as biochar in solid fuel cells. Microalgae-based 

biopolymers can be used in a wide range of products, nevertheless, the 

resulting process efficiency and yields depend on the extraction process 

utilized, as well as on the microalgae species used and the culture 

conditions. Furthermore, the polymer extraction can be done directly with 

common solvents at atmospheric pressure or with other fluids, such as 

supercritical CO2 or subcritical solvents, and assisted by specific treatments, 

e.g., ultrasound and microwave. The residual biomass can still be used to

produce other less valuable products, such as feedstock, and energy via

combustion. In this sense, the present work aims to provide a state-of-the-

art review on microalgae biopolymers. Issues related to the efficiency of

current treatment methods, industrial applications, and environmental

performance are presented and discussed. Besides, the perspectives in this

area of knowledge are also a contribution of the present work, the extent to

which scientific research is still under development.

Keywords: Cyanobacteria, biomass, polysaccharides, bioengineering, 

sustainability 
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INTRODUCTION 

As human populations grow and rely heavier on 

plastics, greater becomes the environmental, 

economic, and social need for alternatives to 

traditional oil-based polymers. Current plastic 

technology is mostly fossil-fuel derived, and although 

varied in option, relies heavily on just a few plastics. 

In recent years, 70% of all non-fibre plastic 

production were of just polyethylene (PE), 

polypropylene (PP) and polyvinyl chloride (PVC) 

(Geyer et al., 2017)  . Even though there are 

renewable options, these are used in around 1% of 

available polymers, and amidst those, nearly 45% 

behave similarly to fossil-fuel derived plastic, 

therefore being “non-recyclable (Bioplastics market 

data 2018, 2018).  

Microalgae represent an eco-friendly alternative 

for the production of biopolymers (Kartik et al., 

2021). These microorganisms are already used 

extensively in phycoremediation, through which 

algae metabolise pollutants and hinder their effects 

(Olguín, 2003), both micro and macroalgae are thus 

suitable. Macroalgae can be more easily harvested, 

hence the great interest in their bioabsorption 

capabilities of pesticides (Contarini & Dromard, 

2021) and metals (Ociński et al., 2021) which may be 

subject to bioaccumulation. Macroalgae can also 

produce biopolymers of economic interest, such as 

bioplastics and biosolvents (Casoni et al., 2020)  . 

Microalgae are photosynthetic organisms, so 

they are able to grow on autotrophic media, however, 

the main focus of algae research is on heterotrophic 

or mixotrophic media, because these allow for 

wastewater treatment (Chisti, 2008)  . Algae, in 

general, are capable of carbon capture through 

photosynthesis, thus absorbing carbon (C) while 

producing oxygen (O2), and while growing they also 

need nitrogen (N) and phosphorus (P), which are 

found in great quantities in wastewaters (Doran, 

2013) and throughout their growth, they may 

metabolize complex compounds (Lutzu et al., 

2021)  while treating the water medium. 

Microalgae have attracted attention due to their 

ability to grow on waste media and also produce 

interesting molecules, consequently opening the 

possibility for the concept of biorefinery to be put to 

use (Katiyar et al., 2021)  . These products, which 

are highly dependent on species and media 

conditions, may be applied from agriculture to health 

and chemical industries (Parsons et al., 2020). Due to 

the fact that microalgae are highly adaptable and can 

grow in a wide range of media, their use for the 

production of biopolymers (extensively used in 

packaging, medicine, cosmetics, and as feedstock) 

has drawn much attention (Kartik et al., 2021). 

CURRENT MICROALGAE TECHNOLOGIES 

System geometry 

In regards to system geometry, four main factors 

limit the growth of microalgae: light level, agitation, 

aeration and the choice between closed and open 

systems (Kirnev et al., 2020) . 
According to Molina Grima et al., 2003, the first 

step in microalgal culture is to select the type of 

system, either open or closed, in which the process 

will be carried out  . Open systems are cheaper to 

build and easier to maintain (Lutzu et al., 2021), as 

they do not require constant control of some 

variables. There are also open raceway systems in 

which some variables are controlled, such as 

agitation, aeration, culture depth, and nutrient 

concentration. In these systems, greater yields require 

increasingly larger areas, the surface to volume ratio 

has to be small (to allow the light to reach the whole 

cultive) and aeration plays also a limiting factor 

(Jankowska et al., 2017) . 
Closed systems, on the contrary, represent a more 

investment-heavy option on the premise of achieving 

higher control levels. The cultive remains isolated 

from the exterior world and any inputs are closely 

controlled to minimize contamination (Chisti, 

2007) , thus allowing for single species culture. 

Most frequently, they have tubular geometry made of 

transparent plastic or glass, these tubes have limited 

diameter due to sunlight penetration limitations.  
Moreover, tubular bioreactors are not the only 

type of closed systems, there are also bubble column, 

airlift and flat panel bioreactors. The two first are 

rather similar in design, they are water columns 

through which air is bubbled from the base of the 

bioreactor, the difference is that an airlift has an 

internal draft tube through which all the air is 

pumped, creating an internal upwards current that 

promotes better mass-transfer and mixing (Duan and 

Shi, 2014). The bubble column design is simpler, and 

all the air is bubbled from the sparger on the base of 

the column, agitating the medium only (Williams and 

Laurens, 2010) . 
At last, flat panel bioreactors try to minimize light 

pathing and surface area, the reactor consists of a thin 

cuboid-shaped tank or membrane in which the 

biomass is produced, stirring is conducted through 

aeration or by agitating whole-system (Duan and Shi, 

2014). 

Biomass harvesting 

There are two major harvesting classifications: 

dewatering, which consists of separating the biomass 

from all of the solution, here are included 

centrifugation and filtration; and thickening, which 
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aims to separate a more concentrated solution from 

the bulk cultivation media. 
Generally speaking, dewatering methods do not 

require any chemicals added to the medium, offer 

satisfactory recovery rates and can be applied to a 

wide range of species (Milledge and Heaven, 2011). 

Filtration is usually conducted under a vacuum with 

aid of gravitational forces (Ananthi et al., 2021). The 

yielded biomass has good quality. The mostly used 

membranes used for filtration are made of polyvinyl 

chloride (PVC), polyvinylidene fluoride (PVDF), 

polyethersulfone (PES), polyacrylonitrile (PAN), 

polytetrafluoroethylene (PTFE), polyethersulfone 

polyvinyl-pyrrolidone (PES-PVP), (Baerdemaeker et 

al., 2013; Drexler and Yeh, 2014). The effectiveness 

of ceramic filters and supports was assessed by Mo et 

al. (2015) yielding good results. Furthermore, 

ultrafiltration could become a viable option in the 

future (Baerdemaeker et al., 2013; Drexler and Yeh, 

2014; Mo et al., 2015). 
Centrifugation relies on the application of a 

centripetal force which, according to density, 

separates the sample. More dense particles move 

outwards while less dense remain inwards. 

Centrifugation has been used extensively in industry 

(Molina Grima et al., 2003) even though its energy 

consumption is rather high. 
Thickening methods rely on the addition or 

production in situ of chemicals that increase biomass 

aggregation. Microalgae cells are negatively charged 

in their outwards, and thus, usually repel each other 

(Uduman et al., 2010). Flocculants are able to 

neutralise or patch this charge and allow cells to form 

clusters which sink more easily. The flocculant 

source might be chemically induced or natural. In the 

first case, according to Ananthi et al. (2021), a 

compound is added to the medium to start 

flocculation. Bioflocculation may happen naturally or 

induced via a change in the medium once the 

microorganisms become stressed (Larkum et al., 

2012) . Another possible flocculation method, 

whose greatest advantage is that no chemical agents 

are added, is electrolytic flocculation (Uduman et al., 

2010). In this method, an electrical current is applied 

to the culture and the algae cells (negatively charged) 

tend to move to the anode or precipitate on the 

bottom (Kim et al., 2012). 
Contrary to flocculation, where biomass sinks to 

the bottom, flotation is the process through which 

biomass’s tendency to float is taken into advantage 

(M. R. Teixeira and Rosa, 2006). It is commonly 

used for sludge removal and has been proven to be 

effective at large scales. In this process, which may 

be aided by flocculants, particles are separated from 

the solution by the lifting force of air bubbles and 

then are removed from the top as liquid sludge (M. R. 

Teixeira and Rosa, 2006). 

Polymer extraction 

Current extraction techniques consist mainly of 

solvent, microwave-assisted and ultrasound 

extraction (Kartik et al., 2021). Solvent extraction is 

carried out with a mix of chemical compounds 

aiming to extract and precipitate the polymers. 

Usually the biomass is washed with a clean solvent 

and then comes the need to break down hard cell 

walls (El-malek et al., 2021). This particular step can 

be carried out in many ways. Pez Jaeschke et al. 

(2021)  compiled data of the extraction of 

phycocyanin from spirulina and evaluated the results 

of many methods such as freezing and thawing, 

homogenization, mixing, mixing with glass beads, 

bead milling, high pressure homogenization and 

processing, ultrasound (with horn, in bath and 

without aid), microwaving, pulse electric field,  and 

even combinations of those aforementioned. This is 

seen as a key step in obtaining high-quality, high-

purity polymers. 

Microwave assisted extractions present a 

greener approach to biomass extraction (Kartik et al., 

2021). It consists of applying electromagnetic waves 

in the range of 0.3 to 300 GHz, these produce 

changes in the electromagnetic field that lead to the 

movement of charged particles and the alignment of 

dipoles. The medium poses resistance to those 

changes in the form of friction, furthermore, the 

collision between moving particles, among 

themselves and with static particles, both generate 

heat, thus increasing the temperature (Soria et al., 

2014). Ultrasound processing consists of applying 

sound waves in frequencies above human hearing (in 

average 20 kHz) up to several GHz (Picó, 2013), 

these sound waves produce local cavitation bubbles 

which implode locally. They transfer kinetic energy 

to the microparticles in the cell wall and lead to their 

disruption (Kartik et al., 2021). Ultrasound-assisted 

extraction produces reduced extraction times, 

prevents the unnecessary use of solvents, and is 

environmentally friendly ( Soria et al., 2014). 

Another interesting extraction method is with 

subcritical water, which is pressurised to just under 

its critical conditions (the subcritical region). 

Temperatures from 100 to 375 °C and pressures of 

22,1 MPa are attained (Thiruvenkadam et al., 2015). 

At this stage, water becomes less dense and its 

dielectric constant increases significantly, thus 

increasing hydrocarbon solubility (2013; Lindström, 

2007) . Ghosh et al. (2021) investigated the yield of 

subcritical polyhydroxyalkanoate extraction from 

Ulva sp. to rank the impact of temperature, solid load, 

residence time and salinity in the process; 

temperature was found to be the most important 

factor followed by salinity and residence time. 

POLYMERS OF INTEREST 

Since microalgae has high growth rate, elevated  

photosynthetic efficiency and great potential for 

carbon dioxide fixation, they are a great source of 
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biopolymer production. Essentially biopolymers are 

polymers which are biodegradable and  produced 

from biobased materials. Basically, there are three 

methods to obtain  polymers from algae biomass: (1) 

Polymers extracted from biomass (Natural occurring 

polymers), (2) Polymers produced by 

microorganisms, (3) Polymer synthesized by bio-

derivative monomers (Niaounakis M., 2014). 

Algal Polysaccharides 

Being water soluble, biodegradable and 

functionally active, polysaccharides have been used  

in biomedical applications. Microalgae can be used  

to produce a variety of polysaccharides such as 

alginates, fucoidans and carrageenan which are 

structurally and morphologically different (Priyan 

Shanura Fernando et al., 2019). 

PHA ( POLYHYDROXYALKANOATES) 

Polyhydroxyalkanoates present high molecular 

weight, thermoplastic processability and 

hydrophobicity similar to synthetic polymers. Since it 

is biodegradable, PHA is a great substitute for 

synthetic polymers. However, the production cost of 

PHA is higher than that of synthetic ones and  their 

applications are limited (Tan et al., 2017). PHA can 

be synthesized and accumulated inside the cells as 

granules for energy and carbon storage by many 

organisms, such as Chemoautotrophic bacteria and 

cyanobacteria. The usage of cyanobacteria as a PHA-

producing host has many advantages over bacteria 

since cyanobacteria use CO2 and sunlight as carbon 

and energy source. 

Composition of PHA biopolymers depends on 

microbial strains and cultural strains. Up to date, 150 

different structures were identified, most well-known 

monomers are:  

3-hydroxypropionate, 3-hydroxybutyrate, 3-

hydroxyvalerate, 3-hydroxyhexanoate, 3-

hydroxyoctanoate, 3-hydroxydecanoate, 3-

hydroxydodecanoate, 3-hydroxy tetradecanoate and 

4-hydroxybutyrate (Balaji et al., 2013).

PHB ( Poly-Hydroxybutyrate) 

PHB is the most abundant PHA present in various 

cyanobacteria such as Chlorogloea fritschii, Spirulina 

spp., Aphanothece spp., Gloeothece spp., and 

Synechococcus spp., Synechocystis sp., Botryococcus 

braunii, Gloeocapsa sp., Spirulina platensis, 

Phormidium sp., and many others (Balaji et al.,  

2013). Large amounts of lipids are required for the 

production of PHB (Cassuriaga et al., 2018). An 

analysis of the production of PHB done by Kavitha et 

al. (2016) demonstrates the highest amount of PHB 

production (17,4%) was obtained by Botryococcus 

braunii. 

POSSIBLE CO-PRODUCTS OF INTEREST 

Microalgae have the potential for co-production 

of valuable products like carbohydrates, lipids, and 

proteins, starch, cellulose and polyunsaturated FAs 

(PUFAs), pigments, antioxidants, pharmaceuticals, 

fertilizer, energy crops, natural colorants and also as 

biomass that can be used as animal feed after oil 

extraction. 
Proteins are highly important in human nutrition 

and the deficiency thereof can cause malnutrition. 

They are part of the main constituents of microalgae, 

comprising of 50–70% of the microalgae composition 

(Wayne et al., 2017) and it can be used for human or 

animal nutrition as well as care products, emollients 

(as an anti-irritant in peelers and sunscreens) and hair 

care products. Microalgae also represent a valuable 

source of almost all essential vitamins, such as A, B1, 

B2, B6, B12, C, E, nicotinate, biotin, folic acid, and 

pantothenic acid (Richmond, 2003). 
Microalgae contain pigments that are associated 

with light incidence. The main role of pigments in 

microalgae is to provide photoprotection against high 

light intensity. Phycobiliproteins are helpful in 

improving the efficiency of light energy utilization 

and carotenoids serve as photo-protectors against the 

photo-oxidant damage resulting from excess light 

capture. The most common application of natural 

pigments relies on the food industry due to the 

benefits for human health related to their antioxidant 

and pro vitamin A properties. The global market of 

carotenoid is covered about 50% by astaxanthin and 

β-carotenoid (Giraldo-Calderón et al. 2018). 

Astaxanthin is known for its powerful antioxidant 

properties, showing  benefits in the prevention and 

treatment of various conditions. Likewise, 

phycobiliproteins, phycocyanin and phycoerythrin 

are already being used for food and cosmetics 

applications.  
Microalgae normally have high carbohydrate 

content which is primarily composed of glucose, 

starch, cellulose and various kinds of polysaccharides 

(Yen et al., 2013). Algal glucose or starch are used 

for bioethanol and hydrogen production. Microalgae 

polysaccharides are capable of modulating the 

immune system and inflammatory reactions, making 

them sources of cosmetics additives,food ingredients 

and natural therapeutic agents (Yen et al., 2013).  
The use of microalgae for agricultural 

applications is focused on the  use of cyanobacteria, 

which have a high ability to fix atmospheric nitrogen 

(N2) and dispose of it in the form of NH3 for the direct 

assimilation by plants. They have the capability to 

release grown-inducing substances such as auxins 

and cytokinins, while also solubilizing phosphates; 

the inactive biomass provides nutritious organic 

matter that improves soil fertility and crop quality 

(Wang et al., 2015). 

SPECIES OF INTEREST 
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Arthrospira and Spirulina 

Arthrospira and Spirulina are a type of 

filamentous cyanobacteria commercially called 

namely as Spirulina, however, scientific 

nomenclature claims that this name is inappropriate 

for strains used for food supplement and recommends 

the use of Arthrospira (Fujisawa et al., 2010). In the 

bioplastic medium, Spirulina spp. are commonly used 

for feedstock due to its high protein content (Pez 

Jaeschke et al., 2021). They also present a highly 

adaptable metabolism, easiness to harvest and 

capability to produce many different products of 

interest, such as phycobiliproteins of which 

phycocyanins are the best known example 

(Tavanandi and Raghavarao, 2020), carotenoids and 

antioxidants (Moradi et al., 2021), and essential fatty 

acids (Matos, 2020).  
A. platensis cultivated under mixotrophic

conditions may yield up to 8.14% ± 0,30 of its dry 

weight in PHA (Costa, 2018). A. platensis grown 

with Direct Green 6 dye had a positive increase in the 

production of carotenoids and astaxanthin correlated 

with higher concentrations of the dye (Moradi et al., 

2021). Dos Santos et al. (2019) investigated the 

production of C-phycocyanin (C-PC) and PHA by A. 

platensis in N-deficient and N-free media; the results 

show an important correlation of N-deficiency with 

C-PC production and N-absence with PHA

production.

Another biopolymer of interest produced by A. 

platensis are extracellular polymeric substances 

(EPS). Chentir et al. (2017) obtained good results 

with a two-step approach; the first step aimed for 

biomass production under optimal growth conditions 

and the second step addresses EP induction by NaCl 

in increasing quantity to access the optimal 

concentration; their results show that optimal 

conditions require high NaCl concentrations (40 g·l-1) 

coupled with low light intensities (100 to 650 μmol 

photons·m-2·s-1), yielding  0,97 to 0,98 g·g-1 (DW). 

Production of EPS coupled with C-PC was also 

investigated in lab scale for 14 days of culture; higher 

salt and lower light levels (under 70 μmol photons·m-

2·s-1) correlated to better C-PC yields, whilst the

contrary was observed for EPS concentration

(Dejsungkranont et al., 2017).

Chlorella 

Chlorella are fast-growing green algae with the 

potential to be used in biofuel and bioplastic 

production (Zainan et al., 2018). It is a highly proteic 

alga (over 50% dry weight) and whose biomass may 

be plasticized with glycerol as demonstrated by 

Zeller et al. (2013). C. pyrenoidosa was shown to 

produce up to 27% (dry weight) PHB after 14 days of 

growth, the produced polymer was highly 

biodegradable and environmental friendly in addition 

to the fact that C. pyrenoidosa was grown while 

absorbing Ni and Cr from the medium (Das et al., 

2018).  

Botryococcus braunii 

Botryococcus braunii has been widely studied due 

to its potential as hydrocarbon-rich microalgae, for it 

is able to produce liquid hydrocarbons in the form of 

alkenes and isoprenoids, which are stored in the 

extracellular matrix (Metzger and Largeau, 2005)  . 

These hydrocarbons are of special interest because 

they can be converted into gasoline (Hillen et al., 

1982). Concentrated extracts of this microalgae have 

been used as a biopolymer for the development of 

ultrafine fiber through electrospinning (Verdugo et 

al., 2014). B. braunii does also produce extracellular 

proteins and polysaccharides whose structure and 

perspectives of use are still being studied. Increases 

in hydrocarbon quantities correlated to an increase in 

biomass and polymer-matrix production (Tasić et al., 

2016). Furthermore, the structure of the fibrillar 

sheath of B. braunii colonies was found to be rich in 

a novel polysaccharide rich in galactose and 

arabinose with 4-O-methylglucuronic acid and 6-

deoxyaltrose features (Heiss et al., 2021). 

Stigeoclonium 

Stigeoclonium sp. is a rather unknown genus to 

biopolymer production. Recently, there have been 

experimental data by Mourão et al. (2020) which 

showed for the first time that Stigeoclonium sp. B23 

produces PHB, but its production rate is over 6 g l-1 

of PHA, which was above the standard set by 

Bacillus sp. (5,2 g l-1). Mourão et al. (2021) also 

showed that Stigeoclonium sp. B23 could still 

produce PHB when cassava peel was used as a 

carbon source, moreover the productivity actually 

increased to 12,16 ± 1,28% (dry weight); however, 

the obtained PHB revealed the induction of some 

mortality and lethality indicators in zebrafish 

embryos, but other characterization data were 

satisfactory. 

Scenedesmus 

Scenedesmus sp. is widely known due to its 

potential for oil and starch accumulation, however, 

there is little to no data on the potential for 

biopolymer production. Garcia et al. (2020) were the 

first to document the presence of PHA in 

Scenedesmus sp. with very promising results; the 

normal metabolism production of PHA was found to 

be 8,61%, which is already higher than previously 

induced species, while induced production reached 

29,92 50 (dry weight). Scenedesmus sp. is well 

known to be a robust fresh-water algae which may 

facilitate its cultivation and wide-scale production of 

microalgae PHA. 
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