86 research outputs found

    Experimental validation of a modeling framework for upconversion enhancement in 1D-photonic crystals

    Get PDF
    Photonic structures can be designed to tailor luminescence properties of materials, which becomes particularly interesting for non-linear phenomena, such as photon upconversion. However, there is no adequate theoretical framework to optimize photonic structure designs for upconversion enhancement. Here, we present a comprehensive theoretical model describing photonic effects on upconversion and confirm the model’s predictions by experimental realization of 1D-photonic upconverter devices with large statistics and parameter scans. The measured upconversion photoluminescence enhancement reaches 82 ± 24% of the simulated enhancement, in the mean of 2480 separate measurements, scanning the irradiance and the excitation wavelength on 40 different sample designs. Additionally, the trends expected from the modeled interaction of photonic energy density enhancement, local density of optical states and internal upconversion dynamics, are clearly validated in all experimentally performed parameter scans. Our simulation tool now opens the possibility of precisely designing photonic structure designs for various upconverting materials and applications

    The N-Terminal Domain of ERK1 Accounts for the Functional Differences with ERK2

    Get PDF
    The Extracellular Regulated Kinase 1 and 2 transduce a variety of extracellular stimuli regulating processes as diverse as proliferation, differentiation and synaptic plasticity. Once activated in the cytoplasm, ERK1 and ERK2 translocate into the nucleus and interact with nuclear substrates to induce specific programs of gene expression. ERK1/2 share 85% of aminoacid identity and all known functional domains and thence they have been considered functionally equivalent until recent studies found that the ablation of either ERK1 or ERK2 causes dramatically different phenotypes. To search a molecular justification of this dichotomy we investigated whether the different functions of ERK1 and 2 might depend on the properties of their cytoplasmic-nuclear trafficking. Since in the nucleus ERK1/2 is predominantly inactivated, the maintenance of a constant level of nuclear activity requires continuous shuttling of activated protein from the cytoplasm. For this reason, different nuclear-cytoplasmic trafficking of ERK1 and 2 would cause a differential signalling capability. We have characterised the trafficking of fluorescently tagged ERK1 and ERK2 by means of time-lapse imaging in living cells. Surprisingly, we found that ERK1 shuttles between the nucleus and cytoplasm at a much slower rate than ERK2. This difference is caused by a domain of ERK1 located at its N-terminus since the progressive deletion of these residues converted the shuttling features of ERK1 into those of ERK2. Conversely, the fusion of this ERK1 sequence at the N-terminus of ERK2 slowed down its shuttling to a similar value found for ERK1. Finally, computational, biochemical and cellular studies indicated that the reduced nuclear shuttling of ERK1 causes a strong reduction of its nuclear phosphorylation compared to ERK2, leading to a reduced capability of ERK1 to carry proliferative signals to the nucleus. This mechanism significantly contributes to the differential ability of ERK1 and 2 to generate an overall signalling output

    Nuclear Entry of Activated MAPK Is Restricted in Primary Ovarian and Mammary Epithelial Cells

    Get PDF
    The MAPK/ERK1/2 serine kinases are primary mediators of the Ras mitogenic signaling pathway. Phosphorylation by MEK activates MAPK/ERK in the cytoplasm, and phospho-ERK is thought to enter the nucleus readily to modulate transcription.Here, however, we observe that in primary cultures of breast and ovarian epithelial cells, phosphorylation and activation of ERK1/2 are disassociated from nuclear translocalization and transcription of downstream targets, such as c-Fos, suggesting that nuclear translocation is limited in primary cells. Accordingly, in import assays in vitro, primary cells showed a lower import activity for ERK1/2 than cancer cells, in which activated MAPK readily translocated into the nucleus and activated c-Fos expression. Primary cells express lower levels of nuclear pore complex proteins and the nuclear transport factors, importin B1 and importin 7, which may explain the limiting ERK1/2 import found in primary cells. Additionally, reduction in expression of nucleoporin 153 by siRNA targeting reduced ERK1/2 nuclear activity in cancer cells.ERK1/2 activation is dissociated from nuclear entry, which is a rate limiting step in primary cells and in vivo, and the restriction of nuclear entry is disrupted in transformed cells by the increased expression of nuclear pores and/or nuclear transport factors

    Pharmacologic prophylaxis for atrial fibrillation following cardiac surgery: a systematic review

    Get PDF
    Atrial Fibrillation (AF) is the most common arrhythmia occurring after cardiac surgery. Its incidence varies depending on type of surgery. Postoperative AF may cause hemodynamic deterioration, predispose to stroke and increase mortality. Effective treatment for prophylaxis of postoperative AF is vital as reduces hospitalization and overall morbidity. Beta - blockers, have been proved to prevent effectively atrial fibrillation following cardiac surgery and should be routinely used if there are no contraindications. Sotalol may be more effective than standard b-blockers for the prevention of AF without causing an excess of side effects. Amiodarone is useful when beta-blocker therapy is not possible or as additional prophylaxis in high risk patients. Other agents such as magnesium, calcium channels blocker or non-antiarrhythmic drugs as glycose-insulin - potassium, non-steroidal anti-inflammatory drugs, corticosteroids, N-acetylcysteine and statins have been studied as alternative treatment for postoperative AF prophylaxis

    Endobronchial lipoma in a patient with Churg-Strauss syndrome

    No full text
    Churg-Strauss syndrome (CSS) is a disorder characterized by hypereosinophilia and systemic vasculitis complicating a preexisting asthma. We report here a case of CSS with an endobronchial lesion, initially considered to be an endobronchial granuloma of CSS, which was finally diagnosed as a lipoma, a very rare benign tumor of the tracheobronchial tree. To our knowledge, this is the first case in the literature presenting with these two rare entities

    A 680nA fully integrated implantable ECG-acquisition IC with analog feature extraction

    No full text
    Ultra-low power consumption and miniature size are by far the most important design requirements for implantable pacemakers. In order to guarantee a long life span of the device, saving power in the sensing IC is a primary concern as cardiac rhythm disorders must be continuously monitored [1]. Shifting the functionality of QRS-band power parameter extraction to the analog domain can reduce system-level power consumption of heartbeat detection significantly through minimizing computational complexity of the DSP [2,3]. In addition, current biomedical ICs still require further improvement of power efficiency as their analog back ends consume significant power [2-4]. For low-power means, the presented analog signal processor (ASP) introduces a power-efficient analog feature extraction, a current-multiplexed ADC driver and a flexible ADC. This advances the state of the art by reducing the power consumption of the ASP below 1µW without compromising other specs, such as input SNR >70dB, CMRR >90dB, PSRR >80dB, and enables low-power heartbeat detection for implantable pacemakers
    corecore