37,425 research outputs found
electron-positron-photon plasma around a collapsing star
We describe electron-positron pairs creation around an electrically charged
star core collapsing to an electromagnetic black hole (EMBH), as well as pairs
annihilation into photons. We use the kinetic Vlasov equation formalism for the
pairs and photons and show that a regime of plasma oscillations is established
around the core. As a byproduct of our analysis we can provide an estimate for
the thermalization time scale.Comment: 8 pages, 4 figures, to appear in the Proceedings of QABP200
Stress intensity factor in a tapered specimen
The general problem of a tapered specimen containing an edge crack is formulated in terms of a system of singular integral equations. The equations are solved and the stress intensity factor is calculated for a compact and for a slender tapered specimen, the latter simulating the double cantilever beam. The results are obtained primarily for a pair of concentrated forces and for crack surface wedge forces. The stress intensity factors are also obtained for a long strip under uniform tension which contains inclined edge cracks
Interaction between a crack and a soft inclusion
With the application to weld defects in mind, the interaction problem between a planar-crack and a flat inclusion in an elastic solid is considered. The elastic inclusion is assumed to be sufficiently thin so that the thickness distribution of the stresses in the inclusion may be neglected. The problem is reduced to a system of four integral equations having Cauchy-type dominant kernels. The stress intensity factors are calculated and tabulated for various crack-inclusion geometries and the inclusion to matrix modulus ratios, and for general homogeneous loadiong conditions away from the crack-inclusion region
Visual Dynamics: Stochastic Future Generation via Layered Cross Convolutional Networks
We study the problem of synthesizing a number of likely future frames from a
single input image. In contrast to traditional methods that have tackled this
problem in a deterministic or non-parametric way, we propose to model future
frames in a probabilistic manner. Our probabilistic model makes it possible for
us to sample and synthesize many possible future frames from a single input
image. To synthesize realistic movement of objects, we propose a novel network
structure, namely a Cross Convolutional Network; this network encodes image and
motion information as feature maps and convolutional kernels, respectively. In
experiments, our model performs well on synthetic data, such as 2D shapes and
animated game sprites, and on real-world video frames. We present analyses of
the learned network representations, showing it is implicitly learning a
compact encoding of object appearance and motion. We also demonstrate a few of
its applications, including visual analogy-making and video extrapolation.Comment: Journal preprint of arXiv:1607.02586 (IEEE TPAMI, 2019). The first
two authors contributed equally to this work. Project page:
http://visualdynamics.csail.mit.ed
Single Molecule Michaelis-Menten Equation beyond Quasi-Static Disorder
The classic Michaelis-Menten equation describes the catalytic activities for
ensembles of enzyme molecules very well. But recent single-molecule experiment
showed that the waiting time distribution and other properties of single enzyme
molecule are not consistent with the prediction based on the viewpoint of
ensemble. It has been contributed to the slow inner conformational changes of
single enzyme in the catalytic processes. In this work we study the general
dynamics of single enzyme in the presence of dynamic disorder. We find that at
two limiting cases, the slow reaction and nondiffusion limits, Michaelis-Menten
equation exactly holds although the waiting time distribution has a
multiexponential decay behaviors in the nondiffusion limit.Particularly, the
classic Michaelis-Menten equation still is an excellent approximation other
than the two limits.Comment: 10 pages, 1 figur
First-principles study of native point defects in Bi2Se3
Using first-principles method within the framework of the density functional
theory, we study the influence of native point defect on the structural and
electronic properties of BiSe. Se vacancy in BiSe is a double
donor, and Bi vacancy is a triple acceptor. Se antisite (Se) is always
an active donor in the system because its donor level ((+1/0))
enters into the conduction band. Interestingly, Bi antisite(Bi) in
BiSe is an amphoteric dopant, acting as a donor when
0.119eV (the material is typical p-type) and as an acceptor when
0.251eV (the material is typical n-type). The formation energies
under different growth environments (such as Bi-rich or Se-rich) indicate that
under Se-rich condition, Se is the most stable native defect independent
of electron chemical potential . Under Bi-rich condition, Se vacancy
is the most stable native defect except for under the growth window as
0.262eV (the material is typical n-type) and
-0.459eV(Bi-rich), under such growth windows one
negative charged Bi is the most stable one.Comment: 7 pages, 4 figure
On the physical processes which lie at the bases of time variability of GRBs
The relative-space-time-transformation (RSTT) paradigm and the interpretation
of the burst-structure (IBS) paradigm are applied to probe the origin of the
time variability of GRBs. Again GRB 991216 is used as a prototypical case,
thanks to the precise data from the CGRO, RXTE and Chandra satellites. It is
found that with the exception of the relatively inconspicuous but
scientifically very important signal originating from the initial ``proper
gamma ray burst'' (P-GRB), all the other spikes and time variabilities can be
explained by the interaction of the accelerated-baryonic-matter pulse with
inhomogeneities in the interstellar matter. This can be demonstrated by using
the RSTT paradigm as well as the IBS paradigm, to trace a typical spike
observed in arrival time back to the corresponding one in the laboratory time.
Using these paradigms, the identification of the physical nature of the time
variablity of the GRBs can be made most convincingly. It is made explicit the
dependence of a) the intensities of the afterglow, b) the spikes amplitude and
c) the actual time structure on the Lorentz gamma factor of the
accelerated-baryonic-matter pulse. In principle it is possible to read off from
the spike structure the detailed density contrast of the interstellar medium in
the host galaxy, even at very high redshift.Comment: 11 pages, 5 figure
- …
