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Liu Xue-Hui* and F. Erdogan
Lehigh University, Bethlehem, PA 18015

Abstract

In this paper the general problem of a tapered specimen containing an
edge crack is formulated in terms of a system of singular integral equations. .
The equations are solved and the stress intensity factor is calculated for
a "compact" and for a "slender" tapered specimen, the latter simulating
the double cantilever beam, The results are obtained primarily for a pair
of concentrated forces and for crack surface wedge forces. The stress
intensity factors are also obtained for a long strip under uniform tension
which contains inclined edge cracks.

1. Introduction

The main objective of this paper is to provide a solution for a tapered
specimen containing an edge crack by using an integral equation technique.
The geometry of the specimen is shown in Fig.” 1 where the dimensions H, B,
£, m, n, and ¢ are arbitrary. By choosing the relative dimensions properly
one may simulate either the tapered compact tension specimen (Fig. 1) or
the tapered double cantilever beam specimen (Fig. 2 ). Even though the results
are given only for two types of loading shown in Figures (1a) and (), the
formulation of the problem is quite general and any arbitrary loading on
the crack surfaces or on the inclined boundaries, for example, can easily
be taken into account. Of course, the problem can also be solved by using
a finite element method. Because of its practical importance the rectangu-
lar specimen having an edge crack has been studied rather widely (see, for
example, [1] and the articles by Bowie, Isida, and Wilson in [2]), The
general problem was also discussed in a recent article [3].

*Current address: Institute of Structure Strength, Northwestern Polytech-
nical University, Xian, Shaanxi, The People's Republic of China
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2. Formulation of the Problem

We will first consider the general crack problem for an infinite strip
described in Fig. 3. It will be assumed that y=0 is a plane of symmetry
and the location (m,n) of the concentrated force P and the crack surface
tractions are arbitrary. For the purpose of deriving the integral equations
one may express the stress state at a point (x,y) in the strip as follows:

°1'j(x’5') = U]ij(xa.V) + UZ'ij(x"y) + 63ij(x’y) + 04'ij(x"y)
+ 051J(X3.Y) s (i,j=X,Y) . (1)

where the stress components 0143 are associated with an infinite plane con-
taining a crack along (y=0, a<x<b), 9943 and 0313 are associated with a plane
having a crack along (c<r<d, 6) and (c<r<d, -o), respectively, %45 relate
to an infinite plane without any cracks under concentrated forces P at x=m,
y=*n, and 054 are associated with an infinite strip. The total stress

state o;: must satisfy the following boundary conditions (Fig. 3):

i
0y (0:9) = 0, 0, (0.9) = 0, (0gy<) , (2)
oxx(Hy) = 0, o, (Hy) =0, (0zy«=) , (3)
O,y (¥:0) = 0, (0<x<H) , (4)
oy (x:0) = py(x), (a<x<b) , (5)
0gp(rs8) = py(r), (c<r<d) , (6)
6,.6(r:8) = p3(r), (c<r<d)’, (7)

where Pys Py and py are known functions and where it is assumed that because
of symmetry only one half (y>0) of the domain needs to be considered.
We now define the following unknown functions:

i

91(x) = 7y [uy (x,40)-u (x,-0)], (a<x<h) , (8)

g,(r) = 2= [u, (r,e+0)-u,(r,6-0)], (c<r<d) , (9)
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95(r) = 7% [u(rse+0)-u (r,6-0)], (cered) , (10)
gy(r) = 3= [ug(r,-e40)-u (r,-8-0)], (cer<d) , (1)

g5 (r) = == [u (r,-0+0)-u (r,-6-0)], (c<r<d) (12)

where Uys uy or u., u, are the components of the displacement vector referred
to x,y or r,6 coordinates, respectively (Fig. 3). The stress state associ-
ated with an infinite plane containing a symmetrically loaded crack on the
X axis may then be expressed as
b
o113xe) = [ 8500y, t,00g (£)E 4 (1,32x) (13)
a

where the kernels Gij are given in Appendix A. The stresses associated
with edge dislocations of densities 9o and 93 distributed along (c<r<d, o =
constant) are given by

d

opi3{Xsy) = f G, 5 (x25x5¥ )9y (ro dcosergy(ry)sineldr,
o
d
+ J Hij(x,y,xo,yo)[g3(ro)cose-gz(r0)s1'ne]dr0 s
c
(i,3=x,y) (14)

where Gij(x,y,xo,yo) and Hij(x,y,xo,yo), (i,j=x,y) are again given in
Appendix A, and

Xy = yC0S8 5 ¥, = B + r,sine . (15)

Similarly, for the crack lying along (c<r<d, -8) we have
d

o315(Xs¥) = f 6; 5 (xay5x05y)g4(r dcose-gg (ry )sineJdr,

g

+ f Hy 5 (Xs¥ 5% ¥ ) gg (rg ) cosetg, (ry)sineldr ), (1,5=x.y),

c
(16)



Xy = rnC0s6 , ¥, = -B-r sine , (17)

The stresses due to a pair of concentrated forces P and -P (per unit
thickness) are given by (Fig. 3)

o4ij(x,y) = P Q,-J-(x,y,m,n) » (1,3=x,y) (18)

where the functions Qij are given in Appendix B.

Finally, by using Fourier transforms and the symmetry of the problem,

the stresses in an infinite strip O<x<H, -=<y<~ may be expressed as

Gsxx(xay) = - _[ {[C!( +XA )+]+K Az.-l TaX

0

+ [a(A +xA4)- The A4]e }COSayda s

(-]

0'5yy(xs.Y) = 411 I {[a(A-I"’XAz) + = 2] moX

[o]

+

ay | k=1 p 1 =aX
- 7;-[ {[a(A1+xA2) + —E—-Azje

o

[a(Agtxh,) - 551 A, Je¥)sinayda

sty(x :.Y)

(19a~-c)

where A],...,A4 are unknown functions of a.

If we now substitute from (13)-(19) into (1), use the homogeneous boun-

dary conditions (2) and (3), invert the Fourier transforms and evaluate the
resulting infinite integrals, we obtain the unknown functions A1,

..,A4 in
the following form:
by
3
Al = I [ By lentig ()t + PCila) 4 (121,008,
k=1
s
a;=a, b]=b, a=C, bk=d, k=2,3) , (20)



where the symmetry properties

ue(r,-e+0)-ue(r,-e-0) = ue(r,e+0)-ue(r,e-0),

ur(r,-e+0)-ur(r,-e-0) = -[ur(r,e+0)-ur(r,e-0)] (21a,b)

have been used. The explicit expressions of Ai may be found in Appendix C.
We now observe that the boundary condition (4) is satisfied by the
assumed symmetry and from (9)-(12) and (21) we have

g9a(r) = g5(r) 5 gglr) = -g5(r) . (22)

The three remaining boundary conditions (5)-(7) may then be used to deter-

mine the unknown functions 91> 9o and 93 Thus, by substituting from (13)-
(20) into (5)-(7) and by using (22) we obtain the following system of inte-
gral equations to determine 915 9 and g3

3 bj
z[ hys(s,t)g; (t)dt = pi(s) + P hi(s) , (i=1,2,3;
j=1 J J 1 1
%
a]=a<s=x<b=b], 3 =c<s=r<d=b, , k=1,2) , (23)

where hij’ (i,j=1,2,3) and hi’ (i=1,2,3) are known functions and may be
expressed in terms of infinite integrals of the following form by using
the information given in the appendices A, B and C:

x

his(sit) = [ Kizlsataadda s (1,3°1,2,3) (24)

-]

hs(s) =f K;(s,a)de , (i=1,2,3) . (25)

]

For the crack problem shown in Fig. 3, by separating singular part of the
kernels hij through an asymptotic analysis, it can be shown that the main
diagonal elements of hij have Cauchy type singularities. That is, for
are if we let



Kij(s’t"") > Kijm(s’t’“) (26)

we find

[oo]

j Kiso(Sstsa)da Wt — » (i=1,2,3) (27)

o]

and the kernels h.. may be expressed as

h(st)-mt1‘]+k(st),(13123) (28)

where the functions kij are bounded within the closed interval ajgjs,t)gpj,
(3=1,2,3). From the definitions given by (8)-(10) and from Fig. 3 it is
clear that the density functions gj(t), (j=1,2,3) must satisfy

b d

[otigt =0, [gitiae =0, (2,3) . (29)
d c :

Referring to, for example, [4], it is known that the solution of the
system of singular integral equations may be expressed as

g.(t) = —fl(i)—— (a<t<b) (30)
] s ]
/(t-a)(b-t)

Fi(t)
g (t) = —————, (k=1,2; c<t<d) . (31)
V/{t-c)(d-t)
The Modes I and II crack tip stress intensity factors may then be defined
by and evaluated from the following relations:

k1(a) = lim v2(a-x) oy (x 0) = THo 1im Y2 (x-a) g1(x),
X2 X3

k1(b) = 1lg v2{(x-b) oy (x 0)-——-——— 11m YZ2{b-x) 91(x) R (32 a,b)
X

k](c) = 1im v2(c-r) 099 r,e) = 2” 11m v2(r-c) gz(r) R
r=C

k2(c) = 1im v2{c-r) o (r 8) -‘—JL-11m V2{r-c) g3(r) (33 a,b)
r>C
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k.(d) = Tim v2(r-d) o (r,8) = - 21 qip v2(d-r} g,(r) ,
1 86 T+ 2
r-d r-d
kp(d) = Tim vZ(r=d] o, (r,0) = - ]—2“— Tim v2(@7T gg(r) . (34 a,b)
r>d ® Hx r-d

The functions hi(s), (i=1,2,3) and the kernels hij(s,t), (i,3=1,2,3)
may be evaluated in terms of Gij’ Hij’ Qij’ (i,i=x,y), and Ai’ (i=1,...,4)
in a straightforward manner, However, the manipulations and the resulting
expressions are quite lengthy and will not be reproduced in this paper.

We also note that in obtaining the integral equations from the crack
surface boundary conditions (6) and (7), the stress state Uij(x’y)’ (i,j=
X,Y) as given by (1) is substituted into

pz(r) = oee(r,e) = oxx(x,y)sinZe + y(x,y)cos2e-2c;xy(x,y)s1'necose R

%y

= - : 2nocin2
p3(r) are(r,e) [oyy(x,y) oxx(x,y)]s1necose +cxy(x,y)(cos g-sin2s9) ,

X = rcose , y=B+rsine , (e=constant, c<r<d) . (35 a-d)

For the case of "edge" cracks, i.e,, for a=0 or c=0, the asymptotic
analysis would show that the singular parts of the kernels hij(s,t) are
generalized Cauchy kernels. That is, as shown, for example, in [5] the
singular parts contain, in addition to the standard Cauchy kernels, terms
that become unbounded as the variables s and t approach zero simultaneously
and as a consequence at the end point t=0 the density functions gi(t),
(i=1,2,3) become bounded (see, also [3]). The integral equations were
solved by using the technique described, for example, in [6] (see also,

[51).

3. Numerical Results

The first numerical example considered is described by the insert in
Fig. 4, namely a long strip containing two symmetrically located inclined
edge cracks. Rather extensive results for parallel cracks may be found in
[3]. For a given B/H ratio (of 0.2) the normalized stress intensity factors
are given in Table 1., In this example, the relative crack length £ and the
angle & are the variables. Table 1 shows the results for a uniform tension

-7=



oyy=co away from the crack region. In this case the crack surface trac-
tions for the perturbation problem are the input functions in the integral

equations (23) and are given by
pz(r) = -oocosze, p3(r) = -cosinecose . (36)

The special case of this problem for 8=0 was studied in [3] and are also
calculated here for comparison. It may be observed that for small values
of ¢ k2(d) is negative and, as pointed out in [3], would force the cracks
to grow away from each other. However, for relatively large values of ¢
kz(d) becomes positive. This means that for such angles the cracks tend
to grow toward each other or, they tend to orient themselves more nearly
perpendicular to the direction of the external load. This, of course, is
the physically expected result. Theoretically, if the Mode II stress inten-
sity factor kz(d) is zero, momentarily the crack would be expected to grow
in its current plane, Table 1 implies that for a given crack length £/H
the value of 8=8, corresponding to kz(d)=0 can be calculated. For B/H =
0.2 the calculated values of 8, are shown in Fig. 4.

Table 2 shows the results for three edge cracks of equal length in a
Tong strip under uniform tension o, away from the crack region. In this
case too the results for 8=0 agree with those given in [3],

Tables 3-5 show the results for a tapered "compact" specimen contain-
ing an edge crack (a=0, b=£). The stress intensity factor given in Table
3 correspond to a uniformly pressurized crack shown in Fig., (la) for B/H =
0.2 and B/H = 0.48, Tables 4 and 5 give the stress intensity factors for a
pair of concentrated forces and crack surface wedge forces, respectively.

The stress intensity factor for a "slender" tapered specimen (or the
tapered double cantilever beam specimen) described in Fig. 2 is given in
Fig. 5. The figure indicates that for B/H=0.1 one could have a "constant
k" regime only for 6=30° and 0.15<£/H<0,4. For the double cantilever beam
specimen an approximate value of the stress intensity factor may also be
obtained by using the following energy balance relation (Fig. 2):

3C (U-V) = —— (37)



where L is the length of the "beam" (Fig., 2), U is the work of the external
forces P, V is the strain energy, E'=E for plane stress, and E'=E/(1-v2)

for plane strain. By using the beam theory and by taking into considera-
tion the energy due to the transverse shear as well as the bending stresses,
for the specimen shown in Fig. 2 the stress intensity factor may be esti-
mated as follows:

ky(b) = P( ) vF (38)

where the shape factor is calculated to be

L2 . I+

Rt >
for =0 and
2
.. h0 (1+v 1 - ho (ho+2Ltane) (40)
h tLtane tan<e tan<e(h +Ltane)®

for 650 (Fig. 2). A limited comparison of the stress intensity factors
obtained from the elasticity and the beam theories is shown in Table 6.
Considering the simplicity of the beam solution, one may observe that the
agreement between the two results is fairly good. However, one may also
observe that the beam theory gives consistently smaller values than that
obtained from the elasticity solution, Physically, this is not really sur-
prising. As Fig. 2 indicates, the constraint of the actual specimen is
Tess than that of the pair of cantilever beams. Consequently an end con-
dition which is more realistic than the built-in end of a cantilever beam
would give a greater stress intensity factor.
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Table 1. Modes I and II normalized stress intensity factors in a Tong strip
under uniform tension o, which contains two symmetrically located
inclined edge cracks, B/H = 0.2, c=0, a=b (Fig. 3).
£2/H
8
0.1 0.2 0.3 0.4 0.5 0.6
0° 1.1101 1.2123 1.4693 1.8967 2.5980 3.8235
K (d) 5° 1.1149 1.2343 1.5071 1.9576 2.6960 3.9936
1 10° 1.1058 1.2358 1.5128 1.9647 2.7002 3.9974
"0"‘z 15° 1.0831 1.2169 1.4870 1.9210 2.6201 3.8559
30° 0.9408 1.0521 1.2531 1.5591 2.0314 2.8337
0° 0.0323 -0.1083 -0.1694 -0.2280 -0.2937 -0.3597
k..(d) ‘5° 0.0319 -0.0266 -0.0642 -0.0854 -0.0880 -0.0463
2 10° 0.0953 0.0551 0.0416 0.0526 0.1087 0.2302
c’o’/Z 15° 0.1560 0.1333 0.1422 0.1875 0.2822 0.4631
30° 0.3032 0.3188 0.3697 0.4603 0.6047 0.8460
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Table 2. Normalized stress intensity factors in a long strip under
uniform tension o, which contains three edge cracks of equal
length; B/H = 0.2, ¢c=0, a=0, d=b=£ (Fig. 3).

) L k1(b)/oovff k-l(d)/oo/z k2(d)/00/f
0.01 1.1100 1.71149 0.0005
0.1 0.7923 0.9849 -0.1080
0° 0.21 0.8311 1.1134 -0.1740
0.31 0.9929 1.3656 -0.2398
0.41 1.2902 1.7747 -0.3251
0.51 1.8205 2.4480 -0.4452
0.01 1.1102 1.7091 0.0592
0.11 0.8089 0.9987 -0.0485
5o 0.21 0.8618 1.1394 -0.1031
0.31 1.0481 1.4080 -0.1462
0.41 1.3874 1.8432 -0.1950
0.51 1.9915 2.5624 -03.2485
0.01 1.1112 1.0625 ' 0.1727
0.1 0.8566 0.9815 0.0745
jgo 0.21 0.9466 1.1265 0.0388
0.31 1.1886 1.3947 0.0283
0.41 1.6102 1.8251 0.0355
0.51 2.3360 2.5372 0.0764
0.01 1.1136 0.9145 0.3049
0.1 0.9488 0.8573 0.2227
300 0.21 1.0913 0.9707 0.2113
0.31 1.3933 1.1781 0.2393
0.41 1.8832 1.5011 0.3059
0.51 2.6784 2.0131 0.4375
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Table 3. Normalized stress intensity factor k1(b)/oofz in a
tapered specimen containing an edge crack and sub-
jected to uniform crack surface pressure (Fig. la).

£2/H
B/H 8 0.1 0.3 0.5 0.7
0° 1.2499 1.9275 3.0924 6.4152
0.48 10° 1.2164 1.7748 2.9123 6.3642
20° 1.2048 1.7212 2.8625 6.3565
30° 1.1974 1.6930 2.8435 6.3549
0° 1.6747 4.0862 7.3316 10.7602
0.2 10° 1.5066 2.7726 3.9822 6.7785
20° 1.4794 2.2798 3.2527 6.4318
30° 1.3574 2.0052 2.9977 6.3694
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Table 4. Normalized stress intensity factor ky(b)/(PVZ/H)
in a tapered specimen which contains an edge crack and
is subjected to a pair of concentrated forces P, a=0,
B/H=0.48, m/H=0.2, n/H=0,32, (Fig. 1b).

£/H

6 0.1 0.2 0.3 0.4 0.5 0.6

0° | 2.8736 3.6792 4,5127 5.2761 6.2305 7.8916
10° | 2.8067 3.4466 4.1153 4.8043 5.8059
20° | 2.7201 3.3067 3.9374 4.6296 5.6743

Table 5. Normalized stress intensity factor ky(b)/(PvZ/H) in
a tapered specimen which contains an edge crack and
is subjected to concentrated wedge forces P; a=0,
B/H=0.48, m/H=0.2, n=0 (Fig. 1b).

£/H
0.3 0.4 0.5 0.6 0.7

0° 5.3245 5.4715 6.2768 7.8647
10° 4.9568 5.0104 5.8537 7.5822 11.2294
20° 4.8228 4.8608 5.7348 7.5170 11,2130
30° 4.7624 4.7996 5.6917 7.4964 11.2093

e

Table 6. Comparison of the stress intensity factors kl(b)/(P//ﬁ)
calculated from the elasticity solution and "from the
beam theory for a slender tapered specimen; a=0, B/H=
0.1, m/H=0.067, n/H=0.05, L-m=L, (Fig. 2).

5 L/H
0.3 0.4 0.5 0.6
10° Elasticity 9.70 10.40 11,22 11.85
Beam 8.31 9.59 10.61 11.37
000 Elasticity 6.38 6.73 6.89 7.1
Beam 5.94 6.37 6.61 6.73
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APPENDIX A

The Green's functions Gij and Hij for a pair of edge dislocations
at the point (Xo’Yo) in an infinite plane.

2y (hmKIL(XG-)2=(¥-Y,)2]

S (KoY oXooYo) = TrTey OBV 2e (A1)
B,y (oYX ¥g) = =8 (XOE?iEfi;:I?if:i§gai)2]’ )
Gy (X:Y5%,¥0) = s (Y'{?iif1312ii2§:§;§12] , (A3)
gy g
oy (KYSX 0¥ o) = W(fﬁg) (Y-Yﬁziiz;;ﬁii;fiz;f;z] (A5)
ey (KoY o,Yo) = =B ‘X°Efi£f§3212§2§2}1312] (A6)
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APPENDIX B

The Green's functions Qi' due to a pair of concentrated forces P

acting at the points (m,n) and (m,-n) in an infinite plane,

- 4(x-m)2
Qe (Xs¥smsn) = zmﬂ e [ - e e

4(x-m)2
- e 1 - (x-nﬂ(§+?))l+n)7]} ’ (81)

1 - 4(x-m)?2
Qy(xaysman) = ey frgmyzryamy [(e3) + (x-m§§+%-n)4]
4(x=-m)2
~ (x-m )Z+(y+n7?[ ~(et3) (x-r?)(frzzwnﬁj} ’ (B2)
] - 4(x-m)?2
Qxy(x,y,m,n) = ZIED) {(x-ﬁ§4T(y—n)4 ['(K+3) + (x_m§§+%%_n)z]
X=m 4(X"m)2 J} . (83)

- ez (3) + oz

=16~



APPENDIX C
The functions Ai(a), (i=1,...,4).
L+ -
Ai(a) = jE] Eij(a)Rj(a) ’ (7=],-..s4) ’ (c1)
R_-l(cx) = F]-(a) + G_i(a) + Hi(a) + Pi(a) , (i=1,...,4) (c2)
b
Fite) = | Cpplantlgy ()dt
;
G](a) = [ [C]Z(a,ro)gz(ro) + C.lz(a,ro)taneg3(ro)]cosedr0 R

c
d

H1(a) = J [C]3(a,ro)g3(ro) - C13(a,r0)tanegz(ro)]cosedrd ,
c

P](d) = C14(3)P ’ (C3)
b

Fale) = [ Cpplantley(tret
a
d

Gpla) = [ [epplarmy)ay(ry) + Cpplarm,Ntansgs(r,)Jcosedr,
c

Hy(a) = [ [Cp5lanry)aglry) - Cpalunry)tansgy(r,)lcossdr,
C

Pz(a) = C24(G)P s (c4)
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b

Fafe) = [ Cgyletlgy ()et
d
d

G3(a) = J [C32(a,ro)92(ro) + C32(a,ro)taneg3(ro)]cosedro R

c
d

H3(a) = f [C33(a,ro)g3(ro) - C33(a,ro)tanegz(ro)]cosedr0 ,
c

P3(d) = C34(Q)P » (CS)

b

Fple) = f Cqq(ast)gq(t)dt ,
a

G4(a) = j [C42(a,ro)gz(ro) + C42(a,ro)taneg3(r0)]cosedr0 ,

c
d

Hh(“) = I [C43(a,r0)g3(ro) - C43(a,r0)tanegz(ro)]cosedro ,
c

P4(a) = C44(G)P ’ (C6)

_ 1 -at
C”(a,t) = -F]—ate .
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Fig. 1 Geometry and loading conditions for tapered "compact" specimen
with an edge crack.
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Fig. 2 The tapered "slender™ specimen or the tapered double canti-
lever beam.
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Fig. 3 General description of the inclined crack problem.
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Fig. 4
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The angle 8o corresponding to zero Mode II stress intensity
factor in a Tong strip containing two inclined edge cracks,
B/H = 0.2.



Fig. 5
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Stress intensity factor ky(b)/(P/MH) in a "slender" tapered
specimen shown in Fig. 2; m/H = 0.067, n/H = 0,05, B/H = 0.1.
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