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STRESS INTENSITY FACTOR IN A TAPERED SPECIMEN 
by 

* Liu Xue-Hui and F. Erdogan 
Lehigh University, Bethlehem, PA 18015 

Abstract 

In this paper the general problem of a tapered specimen containing an 
edge crack is formulated in terms of a system of singular integral equations •. 
The equations are solved and the stress intensity factor is calculated for 
a "compact" and for a "slender" tapered specimen, the latter simulating 
the double cantilever beam. The results are obtained primarily for a pair 
of concentrated forces and for crack surface wedge forces. The stress 
intensity factors are also obtained for a long strip under uniform tension 
which contains inclined edge cracks. 

1. Introduction 

The main objective of this paper is to provide a solution for a tapered 
specimen containing an edge crack by using an integral equation technique. 
The geometry of the specimen is shown in Fig: 1 where the dimensions H, B, 
l, m, n, and e are arbitrary. By choosing the relative dimensions properly 
one may simulate either the tapered compact tension specimen (Fig. 1) or 
the tapered double cantilever beam specimen (Fig. 2). Even though the results 
are given only for two types of loading shown in Figures (la) and (lb), the 
formulation of the problem is quite general and any arbitrary loading on 
the crack surfaces or on the inclined boundaries, for example, can easily 
be taken into account. Of course, the problem can also be solved by using 
a finite element method. Because of its practical importance the rectangu
lar specimen having an edge crack has been studied rather widely (see, for 
example, [lJ and the articles by Bowie, Isida, and Wilson in [2J). The 
general problem was also discussed in a recent article [3J. 

* Current address: Institute of Structure Strength, Northwestern Poly tech-
nical University, Xian, Shaanxi, The People's Republic of China 
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2. Formulation of the Problem 

We will first consider the general crack problem for an infinite strip 
described in Fig. 3. It will be assumed that y=O is a plane of symmetry 
and the location (m~n) of the concentrated force P and the crack surface 
tractions are arbitrary. For the purpose of deriving the integral equations 
one may express the stress state at a point (x,y) in the strip as follows: 

Ci .. (X,y) = Cil··(x,y) + Ci2··(x,y) + Ci3··(x,y) + Ci4 .. (x,y) lJ lJ lJ lJ lJ 

+ Cis . . (x,y) , lJ (i ,j=x,y) (1 ) 

where the stress components Cil·· are associated with an infinite plane con-lJ 
taining a crack along (y=O, a<x<b), Ci2ij and Ci3i j are associated with a plane 
having a crack along (c<r<d, e) and (c<r<d, -e), respectively, 04ij relate 
to an infinite plane without any cracks under concentrated forces P at x=m, 
y=+n, and Ci5ij are associated with an infinite strip. The total stress 
state Ciij must satisfy the following boundary conditions (Fig. 3): 

CiXX(O,y) = 0, Cixy(Q,y) = 0, (0,9'<00) , (2 ) 

CiXX (H ,y) = 0, (\y( H,y) = 0, (0 <y<oo ) , (3) 

Cixy(X,O) = 0, (O<x<H) , (4) 

Ciyy(X,O) = Pl(x), (a<x<b) , (5) 

Ciee(r,e) = P2(r), (c<r<d) , (6 ) 

Cire(r,e) = P3(r), (c<r<d)' , (7) 

where Pl' P2 and P3 are known functions and where it is assumed that because 
of symmetry only one half (y>O) of the domain needs to be considered. 

We now define the following unknown functions: 

gl(X) = ;x [uy(x,+O)-Uy(x,-O)], (a<x<b) , 

g2(r) = :r [ue(r,e+O)-ue(r,e-O)], (c<r<d) , 
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g3(r) = :r [ur(r,e+O)-ur(r,e-O)], (c<r<d) , 

g4(r) = :r [ue(r,-e+O)-ue(r,-e-O)], (c<r<d) , 

(10) 

(11 ) 

(12) 

where ux' uy or ur ' ue are the components of the displacement vector referred 
to x,y or r,e coordinates, respectively (Fig. 3). The stress state associ
ated with an infinite plane containing a symmetrically loaded crack on the 
x axis may then be expressed as 

b 

°lij(x,y} = I Gij (x,y,t,0)9l(t)dt , (i,j=x,y) 
a 

where the kernels G .. are given in Appendix A. The stresses associated 
lJ 

(13 ) 

with edge dislocations of densities g2 and g3 distributed along (c<r<d, e = 
constant) are given by 

d 

°2ij(x,y) = I Gij(x,y,Xo'YO)[g2(ro)cose+g3(ro)sine]dro 
c 
d 

+ f Hij(x,y,Xo'YO)[g3(rO)cose-g2(rO)sine]dro ' 
c 

(i ,j=x,y) , 

where Gij(x,y,Xo'yo) and Hij(X,y,xo'yo)' (i ,j=x,y) are again given in 
Appendi x A, and 

Similarly, for the crack lying along (c<r<d, -e) we have 
d 

03;j (x ,y) = J G; j (x,y ,xo,y 0) [94( ro )cose-9s (ro)si ne]dr 0 

a 
+ f H;j(x,y,xo'Yo)[gs(ro)cose+g4(rO)sine]dro' (i,j=x,y), 

c 

-3 ... 
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(17) 

The stresses due to a pair of concentrated forces P and -P (per unit 
thickness) are given by (Fig. 3) 

04ij(x,y) = P Qij(x,y,m,n) , (i,j=x,y) (18 ) 

where the functions Qij are given in Appendix B. 
Finally, by using Fourier transforms and the symmetry of the problem, 

the stresses in an infinite strip O<x<H, -~<y<~ may be expressed as 

~ 

(x y) = - 4u f' {[,..(A +xA ) + l+K A ]e-ax 
°Sxx' 'Il' "" 1 2 2 2 

o 

~ 

0Sxyix,y) = - ~ f' {[a(A,+xA2) + K2' A2]e-ax 

o 

[ (A xA) K-l A ] aX . - a 3+ 4 - --2-- 4 e }s1nayda, (19a-c) 

where Al , ••. ,A4 are unknown functions of a. 
If we now substitute from (13)-(19) into ('), use the homogeneous boun

dary conditions (2) and (3), invert the Fourier transforms and evaluate the 
resulting infinite integrals, we 
the following form: 

bk 

obtain the unknown functions A" •.• ,A4 in 

3 
A.(a) = E 

1 k=' 
J Bik(a,t)gk(t)dt + PCi(a) , (i=1, .•. ,4, 
ak 

(20) 
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where the symmetry properti es 

(21a,b) 

have been used. The explicit expressions of Ai may be found in Appendix C. 
We now observe that the boundary condition (4) is satisfied by the 

assumed symmetry and from (9)-(12) and (21) we have 

(22) 

The three remaining bounda~ conditions (5)-(7) may then be used to deter
mine the unknown functions gl' g2 and g3· Thus, by substituting from (13)
(20) into (5)-(7) and by using (22) we obtain the following system of inte
gral equations to determine gl' g2 and g3 

b. 

~ f J 
t.. h. . (s , t ) g . ( t ) dt = p. (s) + Ph. (s) , (i = 1 ,2, 3 ; 

j=l 1J J , , 
a. 

J 
(23) 

where hij , (i,j=1,2,3) and hi' (i=1,2,3) are known functions and may be 
expressed in terms of infinite integrals of the following form by using 
the information given in the appendices A, Band C: 

ex> 

hij(s,t) = f Kij(s,t,a)da, (i,j=1,2,3) , (24) 
o 

ex> 

hies) = I K;(s,a)da, (i=1,2,3) . (25) 

o 

For the crack problem shown in Fig. 3, by separating singular part of the 
kernels hij through an asymptotic analysis, it can be shown that the main 
diagonal elements of hij have Cauchy type singularities. That is, for 
a-+<» if we let 
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K .. (s,t,~) -+ K .. (s,t,~) 
lJ lJOl 

(26 ) 

we fi nd 
Ol 

J KiiOl(s,t,~)d~ = n(~~K) t~s ' (i=1,2,3) (27) 

o 

and the kernels hij may be expressed as 

2 o .. 
hij(s,t) = n(l~K) t~~ + kij(s,t) , (i,j=1,2,3) (28) 

where the functions k.
J
. are bounded within the closed interval a.«s,t)<b., 

1 J- - J 
(j=1,2,3). From the definitions given by (8)-(10) and from Fig. 3 it is 
clear that the density functions 9j(t), (j=1,2,3) must satisfy 

b d 

J gl(t)dt = 0 , J gk(t)dt = 0 ,(k=2,3) • (29) 
a c 

Referring to, for example, [4], it is known that the solution of the 
system of singular integral equations may be expressed as 

F (t) 
9l(t} = 1 , (a<t<b) , 

I( t-a}{b-t) 

Fk(t) 
gk(t) = ---.,;.;...--, (k=1,2; c<t<d) • 

I(t-c) (d-t) 

(30 ) 

(31) 

The Modes I and II crack tip stress intensity factors may then be defined 
by and evaluated from the following relations: 

(32 a,b) 

kl (c) = lim 12(c-r) cree(r,e) = l: lim 12{r-c) g2(r) , 
r-+c K r-+e 

k2(c) = lim v'2(c-r} cr e(r,e) = 12.: lim v'2(r-c) g3(r) , 
r-+e r K r-+e 

(33 a,b) 
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kl(d) = lim 12(r-d) 0ee(r,e) = - i: lim v'2(d-r} g2(r} , 
r-+d K r-+<l 

k2 ( d) = 1 i m v'2 ( r- d) ° re ( r ,e) = - l~ 1 i m 12 ( d- r) g 3 ( r) 
~d r-+<l 

(34 a,b) 

The functions hies), (i=1,2,3) and the kernels h;j(s,t}, (i ,j=1,2,3) 
may be evaluated in terms of G;j' Hij , Qij' (i,j=x,y), and Ai' (i=1, •.• ,4) 

in a straightforward manner. However, the manipulations and the resulting 
expressions are quite lengthy and will not be reproduced in this paper. 

We also note that in obtaining the integral equations from the crack 
surface boundary conditions (6) and (7), the stress state 0ij(x,y), (i ,j= 
x,y) as given by (1) is substituted into 

P2(r) = 0ee(r,e) = 0xx(x,y)sin2e + 0yy(x,y)cos 2e-2oXy(x,y)sinecose , 

P3(r) = 0re(r,e)=[oyy(x,y)-oxx(x,y)Jsinecose +0xY(x,y)(cos 2e-sin2e) , 

x = rcose , y=B+rsine , (e=constant, c<r<d) (35 a-d) 

For the case of "edge II cracks, i.e., for a=O or c=O, the asymptoti c 
analysis would show that the singular parts of the kernels hij(s,t) are 
generalized Cauchy kernels. That is, as shown, for example, in [5J the 
singular parts contain, in addition to the standard Cauchy kernels, terms 
that become unbounded as the variables sand t approach zero simultaneously 
and as a consequence at the end point t=O the density functions gi(t}, 
(i=1,2,3) become bounded (see, also [3J). The integral equations were 
solved by using the technique described, for example, in [6J (see also, 
[5]) . 

3. Numerical Results 

The first numerical example considered is described by the insert in 
Fig. 4, namely a long strip containing two symmetrically located inclined 
edge cracks. Rather extensive results for parallel cracks may be found in 
[3]. For a given B/H ratio (of 0.2) the normalized stress intensity factors 
are given in Table 1. In this example, the relative crack length l and the 
angle e are the variables. Table 1 shows the results for a uniform tension 
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ayy=a
o 

away from the crack region. In this case the crack surface trac
tions for the perturbation problem are the input functions in the integral 
equations (23) and are given by 

P2{r) = -aocos2e, P3(r) = -aosin6cose . (36 ) 

The special case of this problem for 6=0 was studied in [3J and are also 
calculated here for comparison. It may be observed that for small values 
of e k2(d) is negative and, as pointed out in [3J, would force the cracks 
to grow away from each other. However, for relatively large values of e 
k2{d) becomes positive. This means that for such angles the cracks tend 
to grow toward each other or, they tend to orient themselves more nearly 
perpendicular to the direction of the external load. This, of course, is 
the physically expected result. Theoretically, if the Mode II stress inten
sity factor k2(d) is zero, momentarily the crack would be expected to grow 
in its current plane. Table 1 implies that for a given crack length l/H 
the value of e=eo corresponding to k2(d)=0 can be calculated. For 8/H = 
0.2 the calculated values of eo are shown in Fig. 4. 

Table 2 shows the results for three edge cracks of equal length in a 
long strip under uniform tension ao away from the crack region. In this 
case too the results for e=O agree with those given in [3J. 

Tab les 3-5 show the results for a tapered "compact II specimen conta; n
ing an edge crack (a=O, b=l). The stress intensity factor given in Table 
3 correspond to a uniformly pressurized crack shown in Fig. (la) for 8/H = 
0.2 and 8/H = 0.48. Tables 4 and 5 give the stress intensity factors for a 
pair of concentrated forces and crack surface wedge forces, respectively. 

The stress intensity factor for a "slender" tapered specimen (or the 
tapered double cantilever beam specimen) described in Fig. 2 is given in 
Fi g. 5. The fi gure i ndi cates that for 8/H=0. lone coul d have a "constant 
k" regime only for e=30° and 0.15<l/H<0.4. For the double cantilever beam 
specimen an approximate value of the stress intensity factor may also be 
obtained by using the following energy balance relation (Fig. 2): 

(37) 
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where L is the length of the "beamll (Fig. 2), U is the work of the external 
forces P, V is the strain energy, E'=E for plane stress, and E'=E/(1-v2 ) 

for plane strain. By using the beam theory and by taking into considera
tion the energy due to the transverse shear as well as the bending stresses, 
for the specimen shown in Fig. 2 the stress intensity factor may be esti
mated as follows: 

k,(b) = P(;h~)~ Ir (38) 

where the shape factor is calculated to be 

(39 ) 

for 6=0 and 

h l+v 1 ho
2 (ho+2Ltane) 

F = h +L~ane (-;-+ tan2e) - tan2a{h +Ltane)3 o· 0 
(40) 

for 6>0 (Figo 2). A limited comparison of the stress intensity factors 
obtained from the elasticity and the beam theories is shown in Table 6. 

Considering the simplicity of the beam solution, one may observe that the 
agreement between the two results is fairly good, However, one may also 
observe that the beam theor,y gives consistently smaller values than that 
obtained from the elasticity solution. Physically, this is not really sur
prising. As Fig. 2 indicates, the constraint of the actual specimen is 
less than that of the pair of cantilever beams. Consequently an end con
dition which is more realistic than the built-in end of a cantilever beam 
would give a greater stress intensity factor. 
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Table 1. Modes I and II normalized stress intensity factors in a long strip 
under uniform tension O'q which contains two symmetrically located 
inclined edge cracks, BtH = 0.2, c=O, a=b (Fig. 3). 

-UH 
e 

0.1 0.2 0.3 0.4 0.5 0.6 

00 1. 1101 1.2123 1.4693 1. 8967 2.5980 3.8235 

kl (d) 
50 1.1149 1.2343 1.5071 1.9576 2.6960 3.9936 

100 1.1058 1.2358 1.5128 1.9647 2.7002 3.9974 
0'0r'T 150 1.0831 1.2169 1.4870 1.9210 2.6201 3.8559 

30 0 0.9408 1.0521 1.2531 1.5591 2.0314 2.8337 

00 -0.0323 -0.1083 -0.1694 -0.2280 -0.2937 -0.3597 
-

k2(d) 
50 0.0319 -0.0266 ~0.0642 -0.0854 -0.0880 -0.0463 

10 0 0.0953 0.0551 0.0416 0.0526 0.1087 0.2302 
O'oll 150 0.1560 0.1333 0.1422 0.1875 0.2822 0.4631 

30 0 0.3032 0.3188 0.3697 0.4603 0.6047 0.8460 

.. 11 .. 



Table 2. Normalized stress intensity factors in a long strip under 
uniform tension 0'0 \'/hich contains three edge cracks of equal 
length; B/H = 0.2, c=O, a=O, d=b=l (Fig. 3). 

e l k1 (b)/O'o/.[ kl (d)/O' oil k2 ( d) /0'0 Il 

0.01 1. 1100 1.1149 0.0005 
0.11 0.7923 0.9849 -0.1080 

0° 0.21 0.8311 1.1134 -0.1740 
0.31 0.9929 1.3656 -0.2398 
0.41 1.2902 1. 7747 -0.3251 
0.51 1.8205 2.4480 -0.4452 

0.01 1.1102 1.1091 0.0592 
0.11 0.8089 0.9987 -0.0485 

5° 0.21 0.8618 1. 1394 -0.1031 
0.31 1.0481 1.4080 -0.1462 
0.41 1.3874 1.8432 -0.1950 
0.51 1.9915 2.5624 -G.2485 

0.01 1.1112 1.0625 ' 0.1727 
0.11 0.8566 0.9815 0.0745 

;5° 0.21 0.9466 1.1265 0.0388 
0.31 1. 1886 1.3947 0.0283 
0.41 1.6102 1. 8251 0.0355 
0.51 2.3360 2.5372 0.0764 

0.01 1. 1136 0.9145 0.3049 
0.11 0.9488 0.8573 0.2227 

30° 0.21 1.0913 0.9707 0.2113 
0.31 1.3933 1.1781 0.2393 
0.41 1.8832 1.5011 0.3059 
0.51 2.6784 2.0131 0.4375 
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Table 3. Normalized stress intensity factor kl{b)/O'ol.l in a 
tapered specimen containing an edge crack and sub
jected to uniform crack surface pressure (Fig. la) • 

.e/H 

8/H e 0.1 0.3 0.5 0.7 

0° 1.2499 1.9275 3.0924 6.4152 

0.48 10° 1.2164 1.7748 2.9123 6.3642 
20° 1.2048 1.7212 2.8625 6.3565 

30° 1.1974 1.6930 2.8435 6.3549 

0° 1.6747 4.0862 7.3316 10.7602 

0.2 10° 1.5066 2.7726 3.9822 .6.7785 
20° 1.4194 2.2798 3.2527 6.4318 

-
30° 1.3574 2.0052 2.9977 6.3694 
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Table 4. Nonnalized stress intensity factor kl{b)/(PIl/H) 
in a tapered specimen which contains an edge crack and 
is subjected to a pair of concentrated forces P, a=O, 
B/H=0.48, m/H=0.2, n/H=Oo32, (Fig. lb). 

-e/H 
6 0.1 0.2 0.3 0.4 0.5 0.6 

0° 2.8736 3.6792 4.5127 5.2761 6.2305 7.8916 

10° 2.8067 3.4466 4.1153 4.8043 5.8059 
20° 2.7201 3.3067 3.9374 4.6296 5.6743 

Table 5. Nonnalized stress intensity factor kl{b)/(PIl/H) in 
a tapered specimen which contains an edge crack and 
is subjected to concentrated wedge forces P; a=O, 
B/H=0.48, m/H=0.2, n=O (Fig. lb) . 

e .t/H 
0.3 0.4 0.5 0.6 0.7 

0° 5.3245 5.4715 6.2768 7.8647 

10° 4.9568 5.0104 5.8537 7.5822 11. 2294 
20° 4.8228 4.8608 5.7348 7.5170 11. 2130 

30° 4.7624 4.7996 5.6917 7.4964 11.2093 

Table 6. Comparison of the stress intensity factors kl(b)/(P/iH) 
calculated from the elasticity solution and from the 
beam theory for a slender tapered specimen; a=O, B/H= 
0.1, m/H=0.067, n/H=0.05, -e-m=L, (Fig. 2). 

6 
L/H 

0.3 0.4 0.5 0.6 

10° E1asti city 9.70 10.40 11.22 11.85 
Beam 8.31 9.59 10 0 61 11.37 

20° E1asti city 6.38 6.73 6.89 7.11 
Beam 5.94 6.37 6.61 6.73 
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APPENDIX A 

The Green's functions Gij and Hij for a pair of edge dislocations 
at the pOint (Xo,Yo) in an infinite plane. 

(Xo-X)[(XO-X)2_(Y-YO)2J 
Gxx(X,Y,Xo'Yo) = ~(~~K) [(X _X)2+(y_y )2J~ (Al) 

o 0 

-15~ 



APPENDIX 8 

The Green's functions Qij due to a pair of concentrated forces P 
acting at the points (m,n) and (m,-n) in an infinite plane. 

l+n 4{x-m)2 
- (x-m)2+(y+n)2 [K-1 - (x_m)2+(y+n)2J} , 

( ) = 1 y-n [() 4{x-m)2 J 
Qyy x,y,m,n 2~('+K) {(x-m)2+(y-n)2 - K+3 + (x-m)2+{y-n)2 

y+n [() 4{x-m)2 J 
- (x-m)2+(y+n)2 - K+3 + (x-m)2+(y+n)2 } , 

x-m 4(x-m)2 
- (x-m)2+(y+n)2 [-(K+3) + (x-m)2+(y+n)2J} 

-16-
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APPENDIX C 

The functions Ai(a), (;=1, ... ,4). 

4 
Ai(a) = .r EiJ"(a)RJo(a) , (;=1, ... ,4) , 

J=l 

b 

F,(a) = I C'1(a,t)9,(t)dt, 
a 
d 

G,(a) = J [C'2(a,ro)92(ro) + C'2(a,ro)tane93(ro)]cosedro ' 
c 
d 

H,(a) = J [C'3(a,ro)93(ro) - C13(a,ro)tane92(ro)]cosedro 
c 

b 

F2(a) = J C2,(a,t)9,(t)dt , 
a 
d 

G2(a) = f [C22 (a,ro)92(ro) + C22(a,ro)tane93(ro)]cosedro ' 
c 
d 

H2(a) = J [C23 (a,ro)93(ro) - C23(a,ro)tane92(ro)]cosedro ' 
c 

-17-
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b 

F3(a) = J C31 (a,t)91(t)dt , 
a 
d 

G3(a) = J [C32 (a,ro)92(ro) + C32(a,ro)tane93(ro)]cosedro ' 
c 
d 

H3(a) = J [C33(a,ro)93(ro) - C33(a,ro)tane92(ro)]cosedro ' 
c 

b 

F4{a) = J C41 (a,t)91{t)dt , 
a 
d 

G4{a) = J [C42 (a,ro)92(ro) + C42(a,ro)tane93(ro)]cosedro ' 
c 
d 

H4(a) = J [C43(a,ro)93(ro) - C43(a,ro)tane92(rO)]cosedro ' 
c 

( 1 -at C11 a,t) = - K+l at e , 

-18-
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() 1 -at 
C21 a,t = - K+l e (l-at) , 

1 -aX· = - K+l axe e 0 s1nayo 

C32 (a,ro) = - Kl, a( Xo _H)e-a{H-Xo) cosayo ' 

C33{a,ro) = Kl1 e-a{H-Xo)[a(H-Xo}+l]s;nayo ' 

( ) l' -a(H-m) . C34 a = 4~(K+1) e K-1-2a(H-m) s;nan , 

C41 {a,t) = - Kll e-a{H-t}[l_a(H_t)] , 

C () 1 -a(H-x) 42 a,ro = - K+1 e 0 [l-a(H-xo)]cosaYo ' 

1 ( H) -a(H-xo) . - ~ a X - e s1nay K+I 0 0 ' 

C () 1 -a{H-m)[ 44 a = 4~(K+l) e K+1-2a(H-m)]s;nan , 
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(C8) 

(C9) 

(C10) 

(Cll ) 



E
13

(a) = (2aD-l)[(1_K)(eaH_e-aH) + 2aH(e-aH_KeaH )] , 

E'4(a) = (2aD-l)[(1+K)(eaH_e-aH)_2aH(e-aH+KeaH)] , 

E
33

(a) = (2aD-I)[(K_l)(eaH_e-aH)+2aH(Ke-aH_eaH)] , 

E
34

(a) = (2aD-l)[(K+l)(eaH_e-aH)_2aH(Ke-aH+eaH)] , 

() -I( -2aH ) E41 a = D e -2aH-l, 

() -I( -2aH ) E42 a = D e +2aH-l, 
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(C12) 

(C13) 

(C14) 

(C1S) 

(elS) 
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Geometry and loading conditions for tapered "compact" specimen 
with an edge crack. 
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The tapered "slender" specimeon or the tapered double canti

lever beam. 
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Fi g. 3 General description of the inclined crack problem. 
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Fig. 4 
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The ang1e 60 corresponding to zero Mode II stress intensity 
factor in a long strip containing two inc1ined edge cracks, 
B/H = 0.2. 
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Stress intensity factor kl(b}f(P/vff) in a "slender" tapered 

specimen shown in Fig. 2; m/H ~ 0.067, nIH = 0.05, 8/H = 0.1. 
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