NASA Contractor Report 172533

NASA-CR-172533 19850011129

INTERACTION BETWEEN A CRACK AND A SOFT INCLUSION

Liu Xue-Hui and F. Erdogan

LEHIGH UNIVERSITY Bethlehem, Pennsylvania

Grant NGR 39-007-011 February 1985

JERARY COPY

and a start

LANGLEY RESEARCH OEMIGR LISTARY, MASA RELEPTOR, VIRGINIA

National Aeronautics and Space Administration

Langley Research Center Hampton, Virginia 23665

•

•

· ·

INTERACTION BETWEEN A CRACK AND A SOFT INCLUSION*

by

Liu Xue-Hui and F. Erdogan

Lehigh University, Bethlehem, PA 18015

ABSTRACT

With the application to weld defects in mind, the interaction problem between a planar crack and a flat inclusion in an elastic solid is considered. The elastic inclusion is assumed to be sufficiently thin so that the thickness distribution of the stresses in the inclusion may be neglected. The problem is reduced to a system of four integral equations having Cauchy type dominant kernels. The stress intensity factors are calculated and tabulated for various crack-inclusion geometries and the inclusion to matrix modulus ratios, and for general homogeneous loading conditions away from the crack-inclusion region.

1. Introduction

In studying the strength and fracture of structural solids it is often necessary to take into account, among other factors, the effect of the imperfections in the material. Generally such imperfections are in the form of either geometric discontinuities or material inhomogeneities. For example, in welded joints, various shapes of voids, cracks, notches and regions of lack of fusion may be mentioned as examples for the former and variety of inclusions for the latter. From a viewpoint of fracture mechanics two important classes of imperfections are the planar flaws which may be idealized as cracks and relatively thin inhomogeneities which may be represented by flat inclusions.

The correct way of modeling an inclusion would perhaps be to consider it as an elastic continuum fully bonded to the surrounding matrix. In this case, however, the crack-inclusion problems are generally difficult and only simple geometries and orientations can be treated analytically (see, for

-1-

N85-19439#

This study was supported by the U.S. Department of Transportation Office of University Research under the Contract DTRS 5682-C-00014 and by NASA-Langley under the Grant NGR-39-007-011.

example, [1], [2]). A simple feature of such crack-inclusion interaction problems is that generally the stress intensity factors are magnified if the stiffness of the inclusion is less than that of the matrix and are diminished if the inclusion is stiffer than the matrix. For certain types of "flat" inclusions a simpler way of modeling may be to represent them as either a membrane with no bending stiffness or a perfectly rigid plane stiffener with negligible thickness. In these problems one may use the basic body force solution as the Green's function to derive the related integral equations. On the other hand, since the flat inclusion with an elastic modulus smaller than that of the matrix would itself have a behavior similar to a crack, it needs to be modeled basically as a "cavity" rather than a "stiffener".

Even though the technical literature on cracks, voids and inclusions which exist in the material separately is quite extensive, the problems of interaction between cracks and inclusions do not seem to be as widely studied. Such problems may be important in studying, for example, the micromechanics of fatigue and the fracture in welded joints. In this paper a simple model for flat elastic inclusions is presented and the crack-inclusion interaction problem is considered for various relative orientations.

2. Integral Equations of the Problem

The plane strain or the generalized plane stress interaction problem under consideration is described in Fig. 1. It is assumed that the boundaries of the medium are sufficiently far away from the crack-inclusion region so that their effect on the stress state perturbed by the crack and the inclusion may be neglected and the plane may be considered as being infinite.

Referring to Fig. 1 we define the following unknown functions

$$g_1(x_1) = \frac{\partial}{\partial x_1} [v_1(x_1, +0) - v_1(x_1, -0)], (a < x_1 < b),$$
 (1)

$$h_1(x_1) = \frac{\partial}{\partial x_1} [u_1(x_1, +0) - u_1(x_1, -0)], (a < x_1 < b),$$
 (2)

$$g_2(x_2) = \frac{\partial}{\partial x_2} [v_2(x_2, +0) - v_2(x_2, -0)], (c < x_2 < d),$$
 (3)

$$h_{2}(x_{2}) = \frac{\partial}{\partial x_{2}} \left[u_{2}(x_{2},+0) - u_{2}(x_{2},-0) \right] , (c < x_{2} < d)$$
(4)

-2-

where u and v are, respectively, x and y components of the displacement vector in the coordinate systems shown in the figure. It is assumed that the inclusion fills a flat cavity the initial thickness of which is $h_0(x)$ which is "small" compared to its length $2a_1$. It is also assumed that the thickness variation of the stresses and the strain ε_{XX}^i in the inclusion are negligible. Thus, for the plane strain case, from the Hooke's Law we obtain the fullowing stress-strain relations in the inclusion

$$\varepsilon_{yy}^{i}(x_{1}) = \frac{1 - v_{0}^{-2} v_{0}^{2}}{E_{0}(1 - v_{0})} \sigma_{yy}^{i}(x_{1}) , \quad \varepsilon_{xy}^{i}(x_{1}) = \frac{1}{2u_{0}} \sigma_{xy}^{i}(x_{1}) , \quad (5)$$

where $E_0^{},\,\nu_0^{},\,\mu_0^{}$ are the elastic constants of the inclusion. Now, by observing that

$$\varepsilon_{yy}^{i}(x_{1}) \cong [v_{1}(x_{1},+0)-v_{1}(x_{1},-0)]/h_{0}(x_{1}), \qquad (6)$$

$$2\varepsilon_{xy}^{i}(x_{1}) \cong [u_{1}(x_{1},+0)-u_{1}(x_{1},-0)]/h_{0}(x) , \qquad (7)$$

and

$$E_{0} = 2\mu_{0}(1+\nu_{0}), \kappa_{0} = 3-4\nu_{0}, \qquad (8)$$

from (1), (2) and (5)-(8) we find

$$\sigma_{yy}^{i}(x_{1}) = \frac{\kappa_{0}^{+1}}{\kappa_{0}^{-1}} \frac{\mu_{0}}{h_{0}(x_{1})} \int_{a}^{x_{1}} g_{1}(t) dt , \qquad (9)$$

$$\sigma_{xy}^{i}(x_{1}) = \frac{\mu_{0}}{h_{0}(x_{1})} \int_{a}^{x_{1}} h_{1}(t) dt . \qquad (10)$$

If we let the medium to be uniformly loaded away from the crack-inclusion region as shown in Fig. 1, for the stress components along the x_1 and x_2 axes we obtain

$$\sigma_{yy}^{1\infty}(x_1,0) = \sigma_{yy}^{\infty}, \ \sigma_{xy}^{1\infty}(x_1,0) = \sigma_{xy}^{\infty}, \qquad (11)$$

$$\sigma_{yy}^{2\infty}(x_2,0) = \sigma_{yy}^{\infty}\cos^2\theta + \sigma_{xx}^{\infty}\sin^2\theta - 2\sigma_{xy}^{\infty}\sin\theta\cos\theta , \qquad (12)$$

$$\sigma_{xy}^{2\infty}(x_2,0) = (\sigma_{yy}^{\infty} - \sigma_{xx}^{\infty}) \sin\theta \cos\theta + \sigma_{xy}^{\infty}(\cos^2\theta - \sin^2\theta) .$$
 (13)

From the basic dislocation solution given in, for example, [3], referred to the coordinate system x_1, y_1 the stress state at a point (x_1, y_1) in the plane due to the displacement derivatives g_1, h_1 defined by (1) and (2) may be expressed as

$$\sigma_{XX}^{11}(x_1, y_1) = \int_{a}^{b} [G_{XX}(x_1, y_1, t)g_1(t) + H_{XX}(x_1, y_1, t)h_1(t)]dt , \qquad (14)$$

$$\sigma_{yy}^{11}(x_1, y_1) = \int_{a}^{b} [G_{yy}(x_1, y_1, t)g_1(t) + H_{yy}(x_1, y_1, t)h_1(t)]dt , \qquad (15)$$

$$\sigma_{xy}^{11}(x_1, y_1) = \int_{a}^{b} [G_{xy}(x_1, y_1, t)g_1(t) + H_{yy}(x_1, y_1, t)h_1(t)]dt , \qquad (16)$$

where

$$G_{XX}(x,y,t) = A(t-x)[(t-x)^{2}-y^{2}],$$

$$G_{yy}(x,y,t) = A(t-x)[3y^{2}+(t-x)^{2}],$$

$$G_{xy}(x,y,t) = Ay[y^{2}-(t-x)^{2}],$$

$$H_{xx}(x,y,t) = Ay[y^{2}+3(t-x)^{2}],$$

$$H_{yy}(x,y,t) = Ay[y^{2}-(t-x)^{2}],$$

$$H_{xy}(x,y,t) = A(t-x)[(t-x)^{2}-y^{2}],$$
(17)

$$A(x,y,t) = \frac{2\mu}{(1+\kappa)} \frac{1}{[(t-x)^2+y^2]^2},$$

and μ and κ are the elastic constants of the medium (μ =E/2(1+ ν), κ =3-4 ν for plane strain and κ =(3- ν)/(1+ ν) for generalized plane stress). Similarly, referred to the axes x₂,y₂ the stress state σ_{ij}^{22} , (i,j=x,y) in the plane due to g₂,h₂ may be obtained from (14)-(17) by substituting (c,d) for (a,b) and (x₂,y₂) for (x₁,y₁) and (g₂,h₂) for (g₁,h₁).

The integral equations to determine the unknown functions g_1,h_1,g_2 , and h_2 may be obtained from the following traction boundary conditions along $(y_1=0, a<x_1<b)$ and $(y_2=0, c<x_2<d)$:

$$\sigma_{yy}^{11}(x_1,0) + \sigma_{yy}^{12}(x_1,0) + \sigma_{yy}^{1\infty}(x_1,0) = \sigma_{yy}^{i}(x_1) , (a < x_1 < b) , \qquad (18)$$

$$\sigma_{xy}^{11}(x_1,0) + \sigma_{xy}^{12}(x_1,0) + \sigma_{xy}^{1\infty}(x_1,0) = \sigma_{xy}^{i}(x_1) , (a < x_1 < b) , \qquad (19)$$

$$\sigma_{yy}^{22}(x_2,0) + \sigma_{yy}^{21}(x_2,0) + \sigma_{yy}^{2\infty}(x_2,0) = 0 , (c < x_2 < d) , \qquad (20)$$

$$\sigma_{xy}^{22}(x_2,0) + \sigma_{xy}^{21}(x_2,0) + \sigma_{xy}^{2\infty}(x_2,0) = 0 , (c < x_2 < d) , \qquad (21)$$

where all except the coupling stresses in the second column are given by (9)-(17). The coupling stresses have the following meaning: $\sigma_{yy}^{12}(x_1,0)$ is the normal stress on $y_1=0$ plane due to the displacement derivatives $g_2(x_2)$ and $h_2(x_2)$ and $\sigma_{yy}^{21}(x_2,0)$ is the normal stress on $y_2=0$ plane due to g_1 , h_1 , etc. Thus, after making the necessary stress transformations similar to (12) and (13), we obtain

$$\sigma_{yy}^{12}(x_{1},0) = \int_{c}^{d} [G_{yy}^{12}(x_{1},t)g_{2}(t) + H_{yy}^{12}(x_{1},t)h_{2}(t)]dt , \qquad (22)$$

$$\sigma_{xy}^{12}(x_1,0) = \int_{c}^{d} [G_{xy}^{12}(x_1,t)g_2(t) + H_{xy}^{12}(x_1,t)h_2(t)]dt , \qquad (23)$$

$$\sigma_{yy}^{21}(x_2,0) = \int_{a}^{b} [G_{yy}^{21}(x_2,t)g_1(t) + H_{yy}^{21}(x_2,t)h_1(t)]dt , \qquad (24)$$

$$\sigma_{xy}^{21}(x_2,0) = \int_{a}^{D} [G_{xy}^{21}(x_2,t)g_1(t) + H_{xy}^{21}(x_2,t)h_1(t)]dt , \qquad (25)$$

where from

$$\sigma_{yy}^{12}(x_1,0) = \sigma_{yy}^{22}(x_2,y_2)\cos^2\theta + \sigma_{xx}^{22}\sin^2\theta + \sigma_{xy}^{22}\sin^2\theta$$
(26)

calculated at $x_2 = x_1 \cos \theta$, $y_2 = -x_1 \sin \theta$ we have

$$G_{yy}^{12}(x_{1},t) = G_{yy}(x_{1}\cos\theta, -x_{1}\sin\theta, t)\cos^{2}\theta + G_{xx}(x_{1}\cos\theta, -x_{1}\sin\theta, t)$$

$$+ G_{xy}(x_{1}\cos\theta, x_{1}\sin\theta, t)\sin^{2}\theta , \qquad (27)$$

$$H_{yy}^{12}(x_{1},t) = H_{yy}(x_{1}\cos\theta, -x_{1}\sin\theta, t)\cos^{2}\theta + H_{xx}(x_{1}\cos\theta, -x_{1}\sin\theta, t)$$

+
$$H_{xy}(x_1 \cos\theta, -x_1 \sin\theta, t) \sin 2\theta$$
 (28)

Similar expressions for the remaining kernels in (23)-(25) are obtained by using the stress transformations

$$\sigma_{xy}^{12}(x_{1},0) = [\sigma_{xx}^{22}(x_{2},y_{2}) - \sigma_{yy}^{22}(x_{2},y_{2})] \sin \theta \cos \theta + \sigma_{xy}^{22}(x_{2},y_{2})(\cos^{2}\theta - \sin^{2}\theta) , (x_{2}=x_{1}\cos\theta, y_{2}=-x_{1}\sin\theta) , \qquad (29)$$

$$\sigma_{yy}^{21}(x_2,0) = \sigma_{yy}^{11}(x_1,y_1)\cos^{2\theta} + \sigma_{xx}^{11}(x_1,y_1)\sin^{2\theta} - \sigma_{xy}^{11}(x_1,y_1)\sin^{2\theta}, (x_1=x_2\cos\theta, y_1=x_2\sin\theta),$$
(30)

•

$$\sigma_{xy}^{21}(x_{2},0) = [\sigma_{yy}^{11}(x_{1},y_{1}) - \sigma_{xx}^{11}(x_{1},y_{1})] \sin\theta\cos\theta + \sigma_{xy}^{11}(x_{1},y_{1})(\cos^{2}\theta - \sin^{2}\theta), (x_{1} = x_{2}\cos\theta, y_{1} = x_{2}\sin\theta) .$$
(31)

Thus, from (14)-(25) and (29)-(31) it follows that

.

$$G_{xy}^{12}(x_{1},t) = [G_{xx}(x,y,t)-G_{yy}(x,y,t)]sin\thetacos\theta$$

+ $G_{xy}(x,y,t)cos2\theta$, $(x=x_{1}cos\theta, y=-x_{1}sin\theta)$, (32)

$$H_{xy}^{12}(x_{1},t) = [H_{xx}(x,y,t)-H_{yy}(x,y,t)]sinecose$$

+ $H_{xy}(x,y,t)cos2e$, (x=x₁cose, y=-x₁sine), (33)

$$G_{yy}^{21}(x_{2},t) = G_{yy}(x,y,t)\cos^{2}\theta + G_{xx}(x,y,t)\sin^{2}\theta - G_{xy}(x,y,t)\sin^{2}\theta , (x=x_{2}\cos\theta, y=x_{2}\sin\theta) , \qquad (34)$$

$$H_{yy}^{21}(x_2,t) = H_{yy}(x,y,t)\cos^2\theta + H_{xx}(x,y,t)\sin^2\theta$$

-
$$H_{xy}(x,y,t)\sin^2\theta$$
, $(x=x_2\cos\theta, y=x_2\sin\theta)$, (35)

$$G_{xy}^{21}(x_{2},t) = [G_{yy}(x,y,t)-G_{xx}(x,y,t)]sin\thetacos\theta + G_{xy}(x,y,t)cos2\theta , (x=x_{2}cos\theta, y=x_{2}sin) ,$$
(36)

$$H_{xy}^{21}(x_{2},t) = [H_{yy}(x,y,t)-H_{xx}(x,y,t)]sin\thetacos\theta + H_{xy}(x,y,t)cos2\theta , (x=x_{2}cos\theta, y=x_{2}sin\theta) .$$
(37)

From (18)-(21) the integral equations of the problem may then be obtained as

$$\frac{1}{\pi} \int_{a}^{b} \frac{1}{t-x_{1}} g_{1}(t)dt + \int_{a}^{x_{1}} G(x_{1})g_{1}(t)dt + c_{0} \int_{c}^{d} G_{yy}^{12}(x_{1},t)g_{2}(t)dt + c_{0} \int_{c}^{d} H_{yy}^{12}(x_{1},t)h_{2}(t)dt = -c_{0}\sigma_{yy}^{\infty}, (a < x_{1} < b), \quad (38)$$

$$\frac{1}{\pi} \int_{a}^{b} \frac{1}{t-x_{1}} h_{1}(t) dt + \int_{a}^{x_{1}} H(x_{1}) h_{1}(t) dt + c_{0} \int_{c}^{d} G_{xy}^{12}(x_{1},t) g_{2}(t) dt + c_{0} \int_{c}^{d} H_{xy}^{12}(x_{1},t) h_{2}(t) dt = -c_{0} \sigma_{xy}^{\infty}, (a < x_{1} < b), \qquad (39)$$

$$c_{0} \int_{a}^{b} G_{yy}^{21}(x_{2},t)g_{1}(t)dt + c_{0} \int_{a}^{b} H_{yy}^{21}(x_{2},t)h_{1}(t)dt + \frac{1}{\pi} \int_{c}^{d} \frac{1}{t-x_{2}} g_{2}(t)dt$$

$$= -c_0(\sigma_{yy}^{\infty}\cos^2\theta + \sigma_{xx}^{\infty}\sin^2\theta - \sigma_{xy}^{\infty}\sin^2\theta), (c < x_2 < d), \qquad (40)$$

.

$$c_{0} \int_{a}^{b} G_{xy}^{21}(x_{2},t)g_{1}(t)dt + c_{0} \int_{a}^{b} H_{xy}^{21}(x_{2},t)h_{1}(t)dt + \frac{1}{\pi} \int_{c}^{d} \frac{1}{t-x_{2}} h_{2}(t)dt$$

=
$$-c_0[(\sigma_{yy}^{\infty}-\sigma_{xx}^{\infty})\sin\theta\cos\theta + \sigma_{xy}^{\infty}\cos2\theta], (c (41)$$

where

$$c_{0} = \frac{1+\kappa}{2\mu}, \quad G(x_{1}) = -\frac{\mu_{0}(\kappa+1)(\kappa_{0}+1)}{2\mu(\kappa_{0}-1)} \frac{1}{h_{0}(x_{1})},$$

$$H(x_{1}) = -\frac{\mu_{0}(\kappa+1)}{2\mu} \frac{1}{h_{0}(x_{1})}.$$
(42)

If there is no crack in the medium, $g_2=0=h_2$, the integral equations uncouple and (38) and (39) give the unknown functions g_1 and h_1 . For example, if the inclusion has an elliptic cross-section given by

$$h_0(x) = b_0 \sqrt{1 - x^2}$$
, (43)

(38) becomes

$$\frac{1}{\pi} \int_{-1}^{1} \frac{g_1(t)}{t-x} dt - \int_{-1}^{X} \frac{c_1}{\sqrt{1-x^2}} g_1(t) dt = -c_0 \sigma_{yy}^{\infty}$$
(44)

where

$$c_{1} = \frac{\mu_{0}(1+\kappa)(1+\kappa_{0})}{2\mu b_{0}(\kappa_{0}-1)} , \qquad (45)$$

and without any loss in generality it is assumed that a=-1, b=1, $x_1=x$. The solution of (44) is found to be

$$g_{1}(t) = -\frac{c_{0}\sigma_{yy}}{1+c_{1}} \frac{t}{\sqrt{1-t^{2}}}, \quad (-1 < t < 1)$$
 (46)

which, for $\mu_0=0$ reduces to the well-known crack solution. By using the following definition of the stress intensity factor

$$k_{1}(t) = -\lim_{x \to 1} \frac{2u}{1+\kappa} \sqrt{2(1-x)} g_{1}(x) ,$$
 (47)

from (46) it follows that

$$k_{1}(1) = \frac{\sigma_{yy}^{\omega}}{1+c_{1}}$$
 (48)

Similarly, in the absence of a crack from (39), (42) and (43) it may be shown that

$$h_1(t) = -\frac{c_0 \sigma_{xy}}{1+c_2} \frac{t}{\sqrt{1-t^2}}, \quad (-1 < t < 1)$$
 (49)

$$k_2(1) = \frac{\sigma_{xy}^{\infty}}{1+c_2}, \ c_2 = \frac{\mu_0(1+\kappa)}{2\mu b_0}.$$
 (50)

As another special case if we assume that the stiffness of the inclusion $\mu_0=0$, then the functions G and H defined by (42) vanish and the integral equations (38)-(41) reduce to that of two arbitrarily oriented cracks shown in Fig. 1.

3. Stress Intensity Factors

In the linearly elastic medium under consideration the intensity of the stress state around the end points of the crack and the inclusion is governed by the singular behavior of the displacement derivatives g_1 , g_2 , h_1 and h_2 which are defined by (1)-(4). If we assume the following standard definition of Modes I and II stress intensity factors

$$k_{1}(a) = \lim_{\substack{x_{1} \to a}} \sqrt{2(a-x_{1})} \sigma_{yy}^{1}(x_{1},0),$$
 (51)

$$k_{2}(a) = \lim_{\substack{x_{1} \to a \\ x_{1} \to a}} \sqrt{2(a - x_{1})} \sigma_{yy}^{1}(x_{1}, 0) , \qquad (52)$$

$$k_1(c) = \lim_{\substack{x_2 \to c}} \sqrt{2(c-x_2)} \sigma_{yy}^2(x_2,0)$$
, etc., (53)

and observe that the system of integral equations (38)-(41) which has simple Cauchy type kernels has a solution of the form

$$g_{i}(t) = \frac{G_{i}(t)}{\sqrt{(b-t)(t-a)}}, h_{i}(t) = \frac{H_{i}(t)}{\sqrt{(d-t)(t-c)}}, (i=1,2),$$
 (54)

from (38)-(41) and (51)-(54) it can be shown that

$$k_{1}(a) = \frac{2u}{1+\kappa} \lim_{\substack{x_{1} \to a \\ x_{1} \to a}} \sqrt{2(x_{1}-a)} g_{1}(x_{1}) , \qquad (55)$$

$$k_{1}(b) = -\frac{2\mu}{1+\kappa} \lim_{\substack{x_{1} \to b}} \sqrt{2(b-x_{1})} g_{1}(x_{1}),$$
 (56)

$$k_{2}(a) = \frac{2u}{1+\kappa} \lim_{\substack{x_{1} \to a \\ x_{1} \to a}} \sqrt{2(x_{1}-a)} h_{1}(x_{1}) , \qquad (57)$$

$$k_{2}(b) = -\frac{2u}{1+\kappa} \lim_{\substack{x_{1} \to b}} \sqrt{2(b-x_{1})} h_{1}(x_{1}) .$$
 (58)

The stress intensity factors $k_i(c)$ and $k_i(d)$, (i=1,2) may be expressed in terms of g_2 and h_2 by means of equations similar to (55)-(58).

4. Results

The integral equations (38)-(41) are solved by using the technique described in [4] and the stress intensity factors are calculated from (55)-(58) and from similar expressions written for the crack. For various crack-inclusion geometries and stiffness ratios μ_0/μ (μ_0 being the shear modulus of the inclusion) the calculated results are given in Tables 1-6. The main interest in this paper is in relatively "thin" and flat inclusions. Hence in the numerical analysis it is assumed that the thickness h_0 is constant. Table 1 shows the normalized stress intensity factors in a plane which contains a crack equal in size and coplanar with an inclusion and subjected to uniform tension and shear away from the crack-inclusion region (Fig. 2a). The inclusion model used in this analysis is basically a crack the surfaces of which are held together by an elastic medium of shear modulus μ_0 . Thus, for $\mu_0=0$ one recovers the two crack solution. It may be observed that for $\mu_0>0$ there is a significant reduction in the stress intensity factors around the end points $x_1=a$ and $x_1=b$ (Fig. 2a). In Table 1 the variables are the

stiffness ratio μ_0/μ and the thickness of the inclusion h_0/a_1 with the spacing $a/a_1 = 0.01$ being constant, where $2a_1$ is the length of the inclusion (Fig. 2a). Similar results calculated by assuming that $h_0/a_1 = 1/20$ and a/a_1 is variable are shown in Table 2.

For various values of the stiffness ratio μ_0/μ and fixed values of the inclusion thickness $(h_0/a_1=1/20)$ and the distance a $(a/a_1=0.1)$, the effect of the angle θ on the crack tip stress intensity factors are given in Table 3. The geometry and the loading condition away from the crack-inclusion region are shown in Fig. 2b. In this example, too, it is assumed that the inclusion and the crack are of equal length $(a_2=a_1)$. For the special case of $\mu_0=0$, that is, for the case of two cracks of equal lengths oriented at an angle θ the stress intensity factors are given in Table 4.

The stress intensity factors for the symmetric crack-inclusion geometries shown in Figures 3a and 3b are given in Table 5, where the length ratio a_2/a_1 is assumed to be the variable. In both examples the inclusion (half) length a_1 is used as the normalizing length parameter and the relative distance c/a_1 (Fig. 3a) or a/a_1 (Fig. 3b) is assumed to be constant.

Table 6 gives the stress intensity factors for a crack perpendicular to the inclusion where, referring to Fig. 1, $\theta = \pi/2$, a=0, $\mu_0 = \mu/20$ and $c/a_1 = 0.05$ are fixed and a_2 is variable.

It should be noted that since the superposition is valid, the tables give the stress intensity factors for the most general homogeneous loading conditions away from the crack-inclusion region. Also, the tables give the stress intensity factors which are normalized with respect to $\sigma_{ij}^{\infty}\sqrt{a_1}$ where $2a_1$ is the length of the inclusion and (i,j)=(x,y), (Fig. 1). The notation used in the tables is

$$k_{1a} = \frac{k_1(a)}{\sigma_{ij}^{\infty}\sqrt{a_1}}, \quad k_{2a} = \frac{k_2(a)}{\sigma_{ij}^{\infty}\sqrt{a_1}}, \quad k_{1c} = \frac{k_1(c)}{\sigma_{ij}^{\infty}\sqrt{a_1}}, \quad \text{etc.}$$
 (59)

where k_1 and k_2 are, respectively, Modes I and II stress intensity factors defined by equations such as (51)-(53) and calculated from the expressions such as (55)-(58).

REFERENCES

- 1. F. Erdogan and G.D. Gupta, "The inclusion problem with a crack crossing the boundary", Int. Journal of Fracture, Vol. 11, pp. 13-27, 1975.
- F. Erdogan, G.D. Gupta and M. Ratwani, "Interaction between a circular inclusion and an arbitrarily oriented crack", Journal of Applied Mechanics, Vol. 41, Trans. ASME, pp. 1007-1013, 1974.
- 3. J. Dundurs, "Elastic interaction of dislocations with inhomogeneities", <u>Mathematical Theory of Dislocations</u>, T. Mura, ed., pp. 70-115, ASME, New York, 1969.
- 4. F. Erdogan, "Mixed boundary value problems in Mechanics", <u>Mechanics</u> Today, S. Nemat-Nasser, ed., Vol. 4, pp. 1-81, 1978.

Table 1. Modes I and II stress intensity factors for the case of a crack located in the plane of the inclusion in a medium subjected to $\sigma_{yy}^{\tilde{y}}$ or $\sigma_{xy}^{\tilde{y}}$ away from the crack-inclusion region (Fig. 2a); c=-a, d=-b, a/a_1=0.01, $k_{1c}=k_1(c)/\sigma_{yy}^{\tilde{y}}\sqrt{a_1}$, $k_{1d}=k_1(d)/\sigma_{yy}^{\tilde{y}}\sqrt{a_1}$, $k_{2c}=k_2(c)/\sigma_{xy}^{\tilde{y}}\sqrt{a_1}$, $k_{2d}=k_2(d)/\sigma_{xy}^{\tilde{x}}\sqrt{a_1}$, $k_{1a}=k_1(a)/\sigma_{yy}^{\tilde{y}}\sqrt{a_1}$, $k_{2a}=k_2(a)/\sigma_{xy}^{\tilde{x}}\sqrt{a_1}$, $k_{1b}=k_1(b)/\sigma_{yy}^{\tilde{y}}\sqrt{a_1}$, $k_{2b}=k_2(b)/\sigma_{xy}^{\tilde{x}}\sqrt{a_1}$, $a_1=(b-a)/2$.

·	2h	μ ₀ /μ							
	b-a	0	0.05	0.1	0.25	0.5	1.0	2.0	5.0
	0.01	1.2063	.1578	.1031	.0535	.0303	.0163	.0085	.0035
^k 1b	0.02	1.2063	.2320	.15/8	.0888	.0535	.0303	.0103	.0008
10	0.1	1.2063	.5140	.3/13	.2320	.13/8	1570	1034	0535
		1.2003	.0830	2000	2104	1207	0654	0342	0140
Ŀ		2.9042	.5725	.3500	3404	2104	1207	0654	.0276
^ĸ la		2.3042	1 5036	1 1620	70/1	5725	3908	2478	1207
	0.1	2.9042	1 8803	1 5036	1 0636	7941	.5725	.3908	.2104
<u></u>	0.2	2 9642	1 1795	1 1045	1.0479	1.0255	1.0132	1.0067	1.0027
k.	0.02	2.9642	1.2952	1,1795	1.0870	1.0480	1.0255	1.0132	1.0054
~1c	0.1	2.9642	1.7825	1.5321	1.2952	1.1795	1.1045	1.0583	1.0255
	0.2	2.9642	2.0764	1.7825	1.4645	1.2952	1.1795	1.1045	1.0479
	0.01	1.2063	1.0116	1.0063	1.0027	1.0014	1.0007	1.0004	1.0001
6	0.02	1.2063	1.0211	1.0116	1.0051	1.0027	1.0014	1.0007	1.0003
^k ld	0.1	1.2063	1.0693	1.0432	1.0211	1.0116	1.0063	1.0033	1.0014
	0.2	1.2063	1.1019	1.0693	1.0366	1.0211	1.0116	1.0063	1.0027
	0.01	1.2063	.3106	.2159	.1275	.0810	.0482	.0269	.0117
k _{2b}	0.02	1.2063	.4368	.3106	.1910	.1275	.0810	.0482	.0221
20	0.1	1.2063	.8214	.6500	.4368	.3106	.2159	.1459	.0810
·—····	0.2	1.2063	.9673	.8214	.5946	.4368	1.3106	.2159	.12/5
	0.01	2.9642	1.0075	./480	.4/43	.3122	. 1900	10/0	.0470
^k 2a	0.02	2.9642	1.3214	1.0075	. 6/4/	.4/43	. 3122	5245	.0000
	0.1	2.9642	2.1749	1.80/1	1.3214		1 0075	7/00	.3122
<u></u>	0.2	2.9642	2.4/85	2.1/49	11.084/	1.3214	1.0075	1 0225	1 0003
Ŀ		2.9042	1.42/2	1.2091	1.1300	1 1366	1 0778	1 0425	1 0182
^ĸ 2c		2.9042	2 21 26	2 0102	1 6/63	1 1272	1 2601	1 1622	1 0778
		2.9042	2.5150	2 3136	1 0221	1 6463	1 4272	1 2691	1 1366
·		1 2063	1 0330	1 0188	1 0085	1 0045	1 0023	1.0012	1.0005
k	0.01	1 2063	1 0549	1.0330	1.0156	1.0085	1.0045	1.0023	1.0010
~2d	0.02	1 2063	1 1292	1.0954	1.0549	1.0330	1.0188	1.0103	1.0045
	0.2	1.2063	1.1583	1.1292	1.0846	1.0549	1.0330	1.0188	1.0085

Table 2. Modes I and II stress intensity factors for the case of a crack located in the plane of the inclusion in a medium subjected to σ_{yy}^{∞} or σ_{xy}^{∞} away from the crack-inclusion region (Fig. 2a); c=-a, d=-b, $h_0/a_1=1/20$.

	2a	μ ₀ /μ							
	b-a	0	0.05	0.1	0.25	0.5	1.0	2.0	5.0
^к 1ь	0.01	1.2063	.3713	.2611 .2513	.1578	.1031	.0635	.0366 .0354	.0163 .0158
	2	1.0280	.3493	.2479	.1492	.0986	.0607	.0350	.0154
^k la	0.01 0.5 1 2	2.9642 1.1125 1.0480 1.0176	.3877 .3604 .3481	.2768 .2564 .2474	.1693 .1563 .1506	.1110 .1023 .0985	.0685 .0630 .0607	.0395 .0364 .0350	.0654 .0176 .0162 .0156
^k 1c	0.01	2.9642	1.5321	1.3433	1.1795	1.1045	1.0583	1.0313	1.0132
	0.5	1.1125	1.0229	1.0130	1.0057	1.0030	1.0015	1.0008	1.0003
	1	1.0480	1.0096	1.0054	1.0024	1.0012	1.0006	1.0003	1.0001
	2	1.0176	1.0035	1.0020	1.0009	1.0004	1.0002	1.0001	1.0000
k _{ld}	0.01	1.2063	1.0432	1.0253	1.0116	1.0063	1.0033	1.0017	1.0007
	0.5	1.0517	1.0104	1.0058	1.0026	1.0013	1.0007	1.0003	1.0001
	1	1.0280	1.0056	1.0031	1.0014	1.0007	1.0004	1.0002	1.0001
	2	1.0125	1.0025	1.0014	1.0006	1.0003	1.0002	1.0001	1.0000
к _{2Ь}	0.01	1.2063	.6500	.4845	.3106	.2159	.1459	.0943	.0481
	0.5	1.0517	.6031	.4576	.2979	.2084	.1412	.0914	.0467
	1	1.0280	.5925	.4503	.2938	.2057	.1395	.0903	.0461
	2	1.0125	.5849	.4449	.2905	.2035	.1380	.0893	.0456
k _{2a}	0.01	2.9642	1.8071	1.4340	1.0075	.7480	.5345	.3601	.1900
	0.5	1.1125	.6498	.4971	.3272	.2302	.1567	.1017	.0520
	1	1.0480	.6081	.4636	.3035	.2129	.1446	.0937	.0479
	2	1.0176	.5889	.4483	.2930	.2053	.1393	.0902	.0461
k _{2c}	0.01	2.9642	2.0183	1.7299	1.4272	1.2691	1.1623	1.0937	1.0425
	0.5	1.1125	1.0523	1.0344	1.0172	1.0095	1.0050	1.0026	1.0011
	1	1.0480	1.0222	1.0145	1.0072	1.0040	1.0021	1.0011	1.0004
	2	1.0176	1.0081	1.0053	1.0026	1.0014	1.0008	1.0004	1.0002
k _{2d}	0.01	1.2063	1.0954	1.0637	1.0330	1.0188	1.0104	1.0055	1.0023
	0.5	1.0517	1.0239	1.0157	1.0078	1.0043	1.0023	1.0012	1.0005
	1	1.0280	1.0129	1.0084	1.0042	1.0023	1.0012	1.0006	1.0003
	2	1.0125	1.0057	1.0038	1.0019	1.0010	1.0005	1.0003	1.0001

Table 3. The effect of angular orientation a and the modulus ratio u_0/u on the stress intensity factors in a medium under general in-plane loading (Fig. 1); c=a, d=b, $2h_0/(b-a)=1/20$, 2a/(b-a)=0.1.

3	k						100			
		30	60	90	120	150	180			
		$\mu_{0}/\mu = 0.05$								
	k _{1c}	0.2624	0.8047	1.0961	0.8097	0.2654	0			
ж Т	k _{2c}	-0.4711	-0.4636	0.0163	0.4737	0.4585	0			
Ύхх	k _{1d}	0.2560	0.7618	1.0106	0.7562	0.2518	0			
	k _{2d}	-0.4378	-0.4253	0.0122	0.4432	0.4383	0			
	k _{1c}	0.6402	0.2232	-0.0311	0.2749	0.8366	1.1094			
~	k ₂ c	0.4596	0.4217	-0.0483	-0.5019	-0.4771	0			
буу	k _{1d}	0.7052	0.2221	-0.0109	0.2568	0.7702	1.0250			
	k _{2d}	0.4105	0.3981	-0.0386	-0.4636	-0.4493	0			
	k _{1c}	-0.5020	-0.5895	0.2839	1.1440	1.0302	0			
_∞	k ₂ c	0.3394	-0.5681	-1.0010	-0.3793	0.7098	1.2367			
°ху	k _{1d}	-0.9072	-0.8566	0.0354	0.9049	0.8903	0			
	k _{2d}	0.4353	-0.5284	-0.9911	-0.4631	0.5521	1.0567			
		<u>+</u>	r	μ ₀ /μ =	= 0.1	' '	•			
¦	k _{1c}	0.2552	0.7786	1.0613	0.7908	0.2608	0			
	k ₂ c	-0.4593	-0.4546	0.0095	0.4610	0.4512	0			
σxx	k _{1d}	0.2534	0.7570	1.0066	0.7540	0.2512	0			
	k _{2d}	-0.4366	-0.4291	0.0072	0.4395	0.4366	0			
	k _{2c}	0.6535	0.2334	-0.0181	0.2628	0.8003	1.0643			
	k ₂ c	0.4533	0.4238	-0.0293	-0.4758	-0.4605	0			
σуу	k _{1d}	0.7248	0.2350	-0.0058	0.2540	0.7615	1.0143			
	k _{2d}	0.4219	0.4145	-0.0215	-0.4506	-0.4425	0			
	k _{1c}	-0.6023	-0.6717	0.1849	1.0482	0.9749	0			
a construction of the second s	k ₂ c	0.3956	-0.5401	-0.9996	-0.4197	0.6414	1.1599			
Гху	k ₁	-0.8892	-0.8588	0.0230	0.8910	0.8817	0			
	k _{2d}	0.4617	-0.5172	-0.9943	-0.4762	0.5343	1.0374			

Table 3 - cont.

		$\mu_0/\mu = 0.5$						
	k _{lc}	0.2478	0.7537	1.0157	0.7622	0.2535	0	
° S	k _{2c}	-0.4414	-0.4405	0.0019	0.4418	0.4391	0	
ТХХ	k _{ld}	0.2509	0.7517	1.0017	0.7511	0.2503	0	
	k _{2d}	-0.4341	-0.4322	0.0017	0.4347	0.4341	0	
	klc	0.7013	0.2427	-0.0045	0.2523	0.7620	1.0158	
æ	k ₂ c	0.4381	0.4288	-0.0078	-0.4448	-0.4407	0	
σуу	k _{ld}	0.7446	0.2469	-0.0012	0.2510	0.7527	1.0033	
	k _{2d}	0.4312	0.4292	-0.0048	-0.4371	-0.4353	0	
	k _{lc}	-0.7657	-0.8011	0.0517	0.9166	0.8971	0	
	k _{2c}	0.4738	-0.5057	-0.9981	-0.4766	0.5420	1.0479	
	k _{ld}	-0.8712	-0.8639	0.0061	0.8726	0.8702	0	
	k _{2d}	0.4910	-0.5046	-0.9987	-0.4938	0.5094	1.0105	
		$\mu_0/\mu = 2$						
	^k lc	0.2484	0.7504	1.0041	0.7535	0.2510	0	
e Beneric and the second secon	k _{2c}	-0.4356	-0.4354	0.0003	0.4356	0.4349	0	
XX	k _{ld}	0.2503	0.7505	1.0004	0.7503	0.2501	0	
	^k 2d	-0.4333	-0.4328	0.0004	0.4335	0.4333	0	
	k _{lc}	0.7317	0.2473	-0.0012	0.2505	0.7531	1.0042	
σ	^k 2c	0.4330	0.4314	-0.0022	-0.4363	-0.4352	0	
Гуу	k _{ld}	0.7487	0.2492	-0.0003	0.2503	0.7507	1.0009	
	^k 2d	0.4326	0.4321	-0.0012	-0.4341	-0.4336	· 0	
	k _{1c}	-0.8318	-0.8460	0.0146	0.8801	0.8748	0	
e B	^k 2c	0.4947	-0.5001	-0.9989	-0.4932	0.5122	1.0139	
⁻xy	k _{ld}	-0.8674	-0.8655	0.0016	0.8678	0.8672	0	
	k _{2d}	0.4976	-0.5013	-0.9997	-0.4983	0.5026	1.0029	

.

٠

		θ°						
		30	60	90	120	150	180	
	kla	0.1834	-0.0122	-0.1604	-0.1271	-0.0361	0	
	k _{2a}	0.1293	0.0928	0.2122	0.2877	0.1946	0	
	k _{1b}	-0.1471	-0.1373	-0.0666	-0.0113	0.0024	0	
æ	k _{2b}	0.1825	0.2323	0.2104	0.1371	0.0588	0	
σxx	k _{lc}	0.3637	1.0032	1.2370	0.8684	0.2790	0	
	k _{2c}	-0.5576	-0.4950	0.0577	0.5191	0.4810	0	
	k _{ld}	0.3073	0.8057	1.0308	0.7633	0.2536	0	
	k _{2d}	-0.3956	-0.3708	0.0477	0.4591	0.4441	0	
	k _{la}	0.5843	0.9140	1.2370	1.3954	1.4643	1.4914	
œ	k _{2a}	-0.1912	-0.0242	-0.0577	-0.1080	-0.0730	0	
	k _{1b}	0.9210	1.0081	1.0308	1.0567	1.0994	1.1220	
	k _{2b}	0.0215	-0.0427	-0.0477	-0.0168	0.0054	0	
σуу	k _{1c}	0.4051	-0.1004	-0.1604	0.3999	1.1491	1.4914	
	k _{2c}	0.6195	0.4264	-0.2122	-0.6987	-0.6027	0	
	k _{1d}	0.4666	0.0652	-0.0666	0.2821	0.8481	1.1220	
	k _{2d}	0.1916	0.1811	-0.2104	-0.5795	-0.5082	0	
	^k la	0.1842	0.7402	0.6381	0.3381	0.1384	0	
	k _{2a}	1.1741	1.1315	1.0152	1.1777	1.4058	1.4914	
	k 1b	0.4327	0.1938	0.0748	0.0610	0.0532	0	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	k _{2b}	0.5851	0.7960	0.9950	1.1104	1.1305	1.1220	
Υ¥Υ	k _{lc}	-0.4402	-0.4311	0.6381	1.4876	1.2302	0	
	k _{2c}	0.3095	-0.6671	-1.0152	-0.2462	0.9347	1.4914	
	k _{1d}	-1.1414	-0.8951	0.0748	0.9554	0.9234	0	
	k _{2d}	0.1531	-0.6362	-0.9950	-0.4219	0.6115	1.1220	

Table 4. Interaction of two cracks (Fig. 2b);  $\mu_0/\mu_1=0$ , c=a, d=b, 2a/(b-a) = 0.1.

	8 0	k	^a 2 ^{/a} 1					
			0.1	0.5	1.0	5.0		
		k1.=*10	-0.0088	-0.0479	-0.0938	-0.1449		
	œ	$k_{2a} = -k_{2b}$	-0.0058	-0.0820	-0.1428	-0.2729		
Fig. 3a	σxx	$k_{1c}$	+1.0636	1.1611	1.1572	1.1256		
a=-b=-a ₁		k _{1d}	1.0320	1.0245	1.0109	1.0029		
c/a _l =0.1		k _{la} =k _{lb}	0.3424	0.3441	0.3441	0.3438		
	8	^k 2a ^{=-k} 2b	0.0006	0.0039	0.0039	0.0033		
	σуу	k ₁ c	-0.1220	-0.0896	-0.0632	-0.0255		
		k _{ld}	-0.0988	-0.0116	0.0067	0.0021		
		k _{la} =-k _{lb}	-0.0004	-0.0162	-0.0850	-0.5164		
	σ [∞] xy	$k_{2a} = k_{2b}$	0.5703	0.5162	0.4502	0.4199		
		k _{2c}	-0.7288	-0.9533	-1.0730	-1.2431		
		k _{2d}	-0.7856	-1.0338	-1.0638	-1.0200		
•	σ [∞] xx	k _{la}	0.0208	-0.1238	-0.2149	-0.2773		
		k _{1b}	0.0006	0.0100	0.0234	-0.1170		
		$k_{1c} = k_{1d}$	1.0037	1.0053	1.0101	1.0026		
Fig. 3b		$k_{2c}^{=-k}_{2d}$	-0.0011	-0.0074	-0.0107	-0.0045		
$a/a_{1}=0.1$		k _{la}	0.3476	0.3543	0.3764	0.3057		
	o T	k _{1b}	0.3416	0.3418	0.3416	0.3469		
	уу	k _{lc} =k _{ld}	0.1584	-0.0186	-0.0324	-0.0048		
		$k_{2c} = -k_{2d}$	-0.0353	0.0460	0.0406	0.0073		
		^k 2a	0.6514	0.5903	0.4304	0.0544		
	8	k _{2b}	0.5808	0.6066	C.6315	0.3702		
	σxy	$k_{1c}^{=-k_{1d}}$	-0.4813	-0.2431	-0.1012	-0.0010		
		k _{2c} =k _{2d}	-1.3694	-0.9632	-0.9372	-0.9946		

Table 5. Stress intensity factors for the case of a crack perpendicular to the inclusion,  $\mu_0/\mu=1/20$ ,  $h_0/a_1=1/20$ .

-

.

∞	k	a ₂ /a ₁					
σ	ĸ	0.1	0.5	1.0	5.0		
	k _{la}	.0399	.2055	.3675	1.1277		
	k _{2a}	.0128	.0418	.0555	.1125		
	k _{1b}	.0005	.0035	0081	0715		
8	k _{2b}	.0021	.0402	.1107	.3050		
σxx		1.0762	1.1674	1.1729	1.1435		
	k _{2c}	.0162	0056	0311	0740		
	k _{ld}	1.0310	1.0274	1.0143	1.0018		
	k _{2d}	.0207	.0212	.0115	0015		
	k _{la}	.3574	. 3716	. 3791	.3884		
	k _{2a}	.0092	.0283	.0390	.0533		
	к _{1b}	.3414	.3411	.3418	.3456		
	k _{2b}	.0001	0010	0036	0062		
σуу	^k lc	0490	0607	0514	0250		
	k ₂₀	3157	2298	1863	0933		
	k _{1d}	0468	0250	0084	0009		
	k _{2d}	1943	0830	0464	0048		
	k _{la}	.0887	.3231	. 4952	1.1795		
	k _{2a}	.6265	.7947	.9710	1.9112		
	k _{1b}	.0002	.0001	.0079	.2709		
∞	k _{2b}	.5805	.5910	.5713	.4743		
σxy	k1c	1.1620	.6411	.4373	.1825		
	k _{2c}	-1.0423	-1.1380	-1.1889	-1.2670		
	k _{ld}	.6504	.1454	.0426	.0045		
	k _{2d}	9292	9710	-1.0075	-1.0117		

Table 6. Stress intensity factors for a crack perpendicular to the inclusion (Fig. 1);  $\theta = \pi/2$ , a=0, 2c/(b-a)=0.05,  $\mu_0/\mu = 1/20$ ,  $2h_0/(b-a)=0.05$ .

• •

.





The geometry of the crack-inclusion problem



Fig. 2 Special crack-inclusion geometries used in numerical analysis





Fig. 3 Special crack-inclusion geometries used in numerical analysis

1. Report No. NASA CR-172533	2. Government Acce	ssion No.	3. Rec	ipient's Catalog No.			
4. Title and Subtitle INTERACTION BETWEEN A CI	RACK AND A SOFT I	NCLUSION	5. Rep Feb 6. Perf	wrt Date ruary 1985 forming Organization Code			
7. Author(s) Liu Xue-Hui and F. Erdog	jan		forming Organization Report No.				
9. Performing Organization Name and Add Lehigh University Bethlehem, PA 18015	lress		10. wor 11. Con NGR:	tract or Grant No. - 39-007-011			
<ol> <li>Sponsoring Agency Name and Address</li> <li>National Aeronautics and Washington, DC 20546</li> <li>Supplementary Notes</li> </ol>	d Space Administr	ation	13. 199 Con 14. Spor 506	tractor Report			
15. Supplementary Notes Langley Technical Monitor: W. S. Johnson 16. Abstract With the application to weld defects in mind, the interaction problem between a planar-crack and a flat inclusion in an elastic solid is considered. The elastic inclusion is assumed to be sufficiently thin so that the thickness distribution of the stresses in the inclusion may be neglected. The problem is reduced to a system of four integral equations having Cauchy-type dominant kernels. The stress inten- sity factors are calculated and tabulated for various crack-inclusion geometries an the inclusion to matrix modulus ratios, and for general homogeneous loading condi- tions away from the crack-inclusion region.							
17. Key Words (Suggested by Author(s)) Fracture mechanics, str factors, crack-inclusio	ess intensity n, weld defect	18. Distribution Statement Unclassified-Unlimited Subject Category 39					
19. Security Classif. (of this report) Unclassified	20. Security Classif. (of this Unclassified	page)	21. No. of Pages 23	22. Price AO2			

э

,

For sale by the National Technical Information Service, Springfield, Virginia 22161

.

· ·

# 

.