2 research outputs found

    Bacillus Coagulans Enhance the Immune Function of the Intestinal Mucosa of Yellow Broilers

    No full text
    <div><p>ABSTRACT This experiment was conducted to investigate the effects of Bacillus coagulans on the growth performance and immune functions of the intestinal mucosa of yellow broilers. Three hundred and sixty one-day-old yellow chicks were randomly allocated to four treatments groups with six replicates of 15 chicks each. The broilers were randomly subjected to one of the following treatments for 28 days: control group (group1, fed a basal diet) and three treatments (group 2, 3, 4) fed the basal diet supplemented with 100, 200, or 300 mg/kg Bacillus coagulans , respectively). The results showed that for 28 days, compared with the control diet, the dietary addition of 200 mg/kg Bacillus coagulans significantly decreased the feed/gain ratio (F/G) (p<0.05), improved the thymus index, spleen index and bursa index (p<0.05), increased the villus height to crypt depth ratio (V/C) in the duodenum (p<0.05), increased the number of secretory immunoglobulin (sIgA) positive cells ( p<0.05). The dietary addition of 200 mg/kg Bacillus coagulans promoted a significant increase in Lactobacillus spp. populations and suppressed Escherichia coli replication in cecum, compared with the control (p<0.05). Moreover, the dietary addition of 200 mg/kg Bacillus coagulans also significantly enhanced the levels of interferon alpha (IFNα), toll-like receptor (TLR3), and melanoma differentiation-associated protein 5(MDA5) in the duodenum (p<0.05). In conclusion, the dietary addition of Bacillus coagulans significantly improved broiler performance, and enhanced the intestinal mucosal barrier and immune function. The optimal dosage of Bacillus coagulans for yellow broilers was determined as 2×108 cfu/kg.</p></div

    Enhanced light absorption by mixed source black and brown carbon particles in UK winter

    Get PDF
    Black carbon (BC) and light-absorbing organic carbon (brown carbon, BrC) play key roles in warming the atmosphere, but the magnitude of their effects remains highly uncertain. Theoretical modelling and laboratory experiments demonstrate that coatings on BC can enhance BC’s light absorption, therefore many climate models simply assume enhanced BC absorption by a factor of ∼1.5. However, recent field observations show negligible absorption enhancement, implying models may overestimate BC’s warming. Here we report direct evidence of substantial field-measured BC absorption enhancement, with the magnitude strongly depending on BC coating amount. Increases in BC coating result from a combination of changing sources and photochemical aging processes. When the influence of BrC is accounted for, observationally constrained model calculations of the BC absorption enhancement can be reconciled with the observations. We conclude that the influence of coatings on BC absorption should be treated as a source and regionally specific parameter in climate models
    corecore