155 research outputs found

    Berezinskii-Kosterlitz-Thouless transitions in an easy-plane ferromagnetic superfluid

    Full text link
    A two-dimensional (2D) spin-1 Bose gas exhibits two Berezenskii-Kosterlitz-Thouless (BKT) transitions in the easy-plane ferromagnetic phase. The higher temperature transition is associated with superfluidity of the mass current determined predominantly by a single spin component. The lower temperature transition is associated with superfluidity of the axial spin current, quasi-long range order of the transverse spin density and binding of polar-core spin vortices (PCVs). Above the spin BKT temperature, the component circulations that make up each PCV spatially separate, suggesting possible deconfinement analogous to quark deconfinement in high energy physics. Intercomponent interactions give rise to superfluid drag between the spin components, which we calculate analytically at zero temperature. We present the mass/spin superfluid phase diagram as a function of quadratic Zeeman energy qq. At q=0q=0 the system is in an isotropic spin phase with SO(3)\mathrm{SO}(3) symmetry. Here the fluid response exhibits a system size dependence, suggesting the absence of a BKT transition. Despite this, for finite systems the decay of spin correlations changes from exponential to algebraic as the temperature is decreased.Comment: 4 pages + refs, 3 figures. Interpretation of Fig. 3 results has changed since v

    Coverage and Characteristics of the Affymetrix GeneChip Human Mapping 100K SNP Set

    Get PDF
    Improvements in technology have made it possible to conduct genome-wide association mapping at costs within reach of academic investigators, and experiments are currently being conducted with a variety of high-throughput platforms. To provide an appropriate context for interpreting results of such studies, we summarize here results of an investigation of one of the first of these technologies to be publicly available, the Affymetrix GeneChip Human Mapping 100K set of single nucleotide polymorphisms (SNPs). In a systematic analysis of the pattern and distribution of SNPs in the Mapping 100K set, we find that SNPs in this set are undersampled from coding regions (both nonsynonymous and synonymous) and oversampled from regions outside genes, relative to SNPs in the overall HapMap database. In addition, we utilize a novel multilocus linkage disequilibrium (LD) coefficient based on information content (analogous to the information content scores commonly used for linkage mapping) that is equivalent to the familiar measure r (2) in the special case of two loci. Using this approach, we are able to summarize for any subset of markers, such as the Affymetrix Mapping 100K set, the information available for association mapping in that subset, relative to the information available in the full set of markers included in the HapMap, and highlight circumstances in which this multilocus measure of LD provides substantial additional insight about the haplotype structure in a region over pairwise measures of LD

    Working with the homeless: The case of a non-profit organisation in Shanghai

    No full text
    This article addresses a two-pronged objective, namely to bring to the fore a much neglected social issue of homelessness, and to explore the dynamics of state-society relations in contemporary China, through a case study of a non-profit organisation (NPO) working with the homeless in Shanghai. It shows that the largely invisible homelessness in Chinese cities was substantially due to exclusionary institutions, such as the combined household registration and 'detention and deportation' systems. Official policy has become much more supportive since 2003 when the latter was replaced with government-run shelters, but we argue that the NPO case demonstrates the potential for enhanced longer-term support and enabling active citizenship for homeless people. By analysing the ways in which the NPO offers services through collaboration and partnership with the public (and private) actors, we also argue that the transformations in postreform China and the changes within the state and civil society have significantly blurred their boundaries, rendering state-society relations much more complex, dynamic, fluid and mutually embedded

    Interspecies variation in hominid gut microbiota controls host gene regulation

    Get PDF
    The gut microbiome exhibits extreme compositional variation between hominid hosts. However, it is unclear how this variation impacts host physiology across species and whether this effect can be mediated through microbial regulation of host gene expression in interacting epithelial cells. Here, we characterize the transcriptional response of human colonic epithelial cells in vitro to live microbial communities extracted from humans, chimpanzees, gorillas, and orangutans. We find that most host genes exhibit a conserved response, whereby they respond similarly to the four hominid microbiomes. However, hundreds of host genes exhibit a divergent response, whereby they respond only to microbiomes from specific host species. Such genes are associated with intestinal diseases in humans, including inflammatory bowel disease and Crohn’s disease. Last, we find that inflammation-associated microbial species regulate the expression of host genes previously associated with inflammatory bowel disease, suggesting health-related consequences for species-specific host-microbiome interactions across hominids

    High-throughput allele-specific expression across 250 environmental conditions

    Get PDF
    Gene-by-environment (GxE) interactions determine common disease risk factors and biomedically relevant complex traits. However, quantifying how the environment modulates genetic effects on human quantitative phenotypes presents unique challenges. Environmental covariates are complex and difficult to measure and control at the organismal level, as found in GWAS and epidemiological studies. An alternative approach focuses on the cellular environment using in vitro treatments as a proxy for the organismal environment. These cellular environments simplify the organism-level environmental exposures to provide a tractable influence on subcellular phenotypes, such as gene expression. Expression quantitative trait loci (eQTL) mapping studies identified GxE interactions in response to drug treatment and pathogen exposure. However, eQTL mapping approaches are infeasible for large-scale analysis of multiple cellular environments. Recently, allele-specific expression (ASE) analysis emerged as a powerful tool to identify GxE interactions in gene expression patterns by exploiting naturally occurring environmental exposures. Here we characterized genetic effects on the transcriptional response to 50 treatments in five cell types. We discovered 1455 genes with ASE (FDR \u3c 10%) and 215 genes with GxE interactions. We demonstrated a major role for GxE interactions in complex traits. Genes with a transcriptional response to environmental perturbations showed sevenfold higher odds of being found in GWAS. Additionally, 105 genes that indicated GxE interactions (49%) were identified by GWAS as associated with complex traits. Examples include GIPR–caffeine interaction and obesity and include LAMP3–selenium interaction and Parkinson disease. Our results demonstrate that comprehensive catalogs of GxE interactions are indispensable to thoroughly annotate genes and bridge epidemiological and genome-wide association studies

    Functional dynamic genetic effects on gene regulation are specific to particular cell types and environmental conditions

    Get PDF
    Genetic effects on gene expression and splicing can be modulated by cellular and environmental factors; yet interactions between genotypes, cell type and treatment have not been comprehensively studied together. We used an induced pluripotent stem cell system to study multiple cell types derived from the same individuals and exposed them to a large panel of treatments. Cellular responses involved different genes and pathways for gene expression and splicing, and were highly variable across contexts. For thousands of genes, we identified variable allelic expression across contexts and characterized different types of gene-environment interactions, many of which are associated with complex traits. Promoter functional and evolutionary features distinguished genes with elevated allelic imbalance mean and variance. On average half of the genes with dynamic regulatory interactions were missed by large eQTL mapping studies, indicating the importance of exploring multiple treatments to reveal previously unrecognized regulatory loci that may be important for disease

    Option Pricing Kernels and the ICAPM

    Get PDF
    We estimate the parameters of pricing kernels that depend on both aggregate wealth and state variables that describe the investment opportunity set, using FTSE 100 and S&P 500 index option returns as the returns to be priced. The coefficients of the state variables are highly significant and remarkably consistent across specifications of the pricing kernel, and across the two markets. The results provide further evidence that, consistent with Merton's (1973) Intertemporal Capital Asset Pricing Model, state variables in addition to market risk are priced
    corecore