6,653 research outputs found
Unidirectional ion transport in nanoporous carbon membranes with a hierarchical pore architecture
The transport of fluids in channels with diameter of 1-2 nm exhibits many anomalous features due to the interplay of several genuinely interfacial effects. Quasi-unidirectional ion transport, reminiscent of the behavior of membrane pores in biological cells, is one phenomenon that has attracted a lot of attention in recent years, e.g., for realizing diodes for ion-conduction based electronics. Although ion rectification has been demonstrated in many asymmetric artificial nanopores, it always fails in the high-concentration range, and operates in either acidic or alkaline electrolytes but never over the whole pH range. Here we report a hierarchical pore architecture carbon membrane with a pore size gradient from 60 nm to 1.4 nm, which enables high ionic rectification ratios up to 104 in different environments including high concentration neutral (3 M KCl), acidic (1 M HCl), and alkaline (1 M NaOH) electrolytes, resulting from the asymmetric energy barriers for ions transport in two directions. Additionally, light irradiation as an external energy source can reduce the energy barriers to promote ions transport bidirectionally. The anomalous ion transport together with the robust nanoporous carbon structure may find applications in membrane filtration, water desalination, and fuel cell membranes
Computational investigation of the phase stability and the electronic properties for Gd-doped HfO_2
Rare earth doping is an important approach to improve the desired properties of high-k gate dielectric oxides. We have carried out a comprehensive theoretical investigation on the phase stability, band gap, formation of oxygen vacancies, and dielectric properties for the Gd-doped HfO_2. Our calculated results indicate that the tetragonal phase is more stable than the monoclinic phase when the Gd doping concentration is greater than 15.5%, which is in a good agreement with the experimental observations. The dopant's geometric effect is mainly responsible for the phase stability. The Gd doping enlarges the band gap of the material. The dielectric constant for the Gd-doped HfO_2 is in the range of 20–30 that is suitable for high-k dielectric applications. The neutral oxygen vacancy formation energy is 3.2 eV lower in the doped material than in pure HfO_2. We explain the experimental observation on the decrease of photoluminescence intensities in the Gd-doped HfO_2 according to forming the dopant-oxygen vacancy complexes
Environmental Drivers of the First Major Animal Extinction Across the Ediacaran White Sea-Nama Transition
The Ediacara Biota-the oldest communities of complex, macroscopic fossils-consists of three temporally distinct assemblages: the Avalon (ca. 575-560 Ma), White Sea (ca. 560-550 Ma), and Nama (ca. 550-539 Ma). Generic diversity varies among assemblages, with a notable decline at the transition from White Sea to Nama. Preservation and sampling biases, biotic replacement, and environmental perturbation have been proposed as potential mechanisms for this drop in diversity. Here, we compile a global database of the Ediacara Biota, specifically targeting taphonomic and paleoecological characters, to test these hypotheses. Major ecological shifts in feeding mode, life habit, and tiering level accompany an increase in generic richness between the Avalon and White Sea assemblages. We find that ∼80% of White Sea taxa are absent from the Nama interval, comparable to loss during Phanerozoic mass extinctions. The paleolatitudes, depositional environments, and preservational modes that characterize the White Sea assemblage are well represented in the Nama, indicating that this decline is not the result of sampling bias. Counter to expectations of the biotic replacement model, there are minimal ecological differences between these two assemblages. However, taxa that disappear exhibit a variety of morphological and behavioral characters consistent with an environmentally driven extinction event. The preferential survival of taxa with high surface area relative to volume may suggest that this was related to reduced global oceanic oxygen availability. Thus, our data support a link between Ediacaran biotic turnover and environmental change, similar to other major mass extinctions in the geologic record
Increased Neutrophil Elastase and Proteinase 3 and Augmented NETosis Are Closely Associated With β-Cell Autoimmunity in Patients With Type 1 Diabetes
Type 1 diabetes (T1D) is an autoimmune disease resulting from the self-destruction of insulin-producing β-cells. Reduced neutrophil counts have been observed in patients with T1D. However, the pathological roles of neutrophils in the development of T1D remain unknown. Here we show that circulating protein levels and enzymatic activities of neutrophil elastase (NE) and proteinase 3 (PR3), both of which are neutrophil serine proteases stored in neutrophil primary granules, were markedly elevated in patients with T1D, especially those with disease duration of less than 1 year. Furthermore, circulating NE and PR3 levels increased progressively with the increase of the positive numbers and titers of the autoantibodies against β-cell antigens. An obvious elevation of NE and PR3 was detected even in those autoantibody-negative patients. Increased NE and PR3 in T1D patients are closely associated with elevated formation of neutrophil extracellular traps. By contrast, the circulating levels of α1-antitrypsin, an endogenous inhibitor of neutrophil serine proteases, are decreased in T1D patients. These findings support an early role of neutrophil activation and augmented neutrophil serine proteases activities in the pathogenesis of β-cell autoimmunity and also suggest that circulating NE and PR3 may serve as sensitive biomarkers for the diagnosis of T1D.postprin
On the Toda Lattice Equation with Self-Consistent Sources
The Toda lattice hierarchy with self-consistent sources and their Lax
representation are derived. We construct a forward Darboux transformation (FDT)
with arbitrary functions of time and a generalized forward Darboux
transformation (GFDT) for Toda lattice with self-consistent sources (TLSCS),
which can serve as a non-auto-Backlund transformation between TLSCS with
different degrees of sources. With the help of such DT, we can construct many
type of solutions to TLSCS, such as rational solution, solitons, positons,
negetons, and soliton-positons, soliton-negatons, positon-negatons etc., and
study properties and interactions of these solutions.Comment: 20 page
PINCH is an independent prognostic factor in rectal cancer patients without preoperative radiotherapy - a study in a Swedish rectal cancer trial of preoperative radiotherapy
<p>Abstract</p> <p>Background</p> <p>The clinical significance between particularly interesting new cysteine-histidine rich protein (PINCH) expression and radiotherapy (RT) in tumours is not known. In this study, the expression of PINCH and its relationship to RT, clinical, pathological and biological factors were studied in rectal cancer patients.</p> <p>Methods</p> <p>PINCH expression determined by immunohistochemistry was analysed at the invasive margin and inner tumour area in 137 primary rectal adenocarcinomas (72 cases without RT and 65 cases with RT). PINCH expression in colon fibroblast cell line (CCD-18 Co) was determined by western blot.</p> <p>Results</p> <p>In patients without RT, strong PINCH expression at the invasive margin of primary tumours was related to worse survival, compared to patients with weak expression, independent of TNM stage and differentiation (<it>P </it>= 0.03). No survival relationship in patients with RT was observed (<it>P </it>= 0.64). Comparing the non-RT with RT subgroup, there was no difference in PINCH expression in primary tumours (invasive margin (<it>P </it>= 0.68)/inner tumour area (<it>P </it>= 0.49). In patients with RT, strong PINCH expression was related to a higher grade of LVD (lymphatic vessel density) (<it>P </it>= 0.01)</p> <p>Conclusions</p> <p>PINCH expression at the invasive margin was an independent prognostic factor in patients without RT. RT does not seem to directly affect the PINCH expression.</p
Experimental NMR Realization of A Generalized Quantum Search Algorithm
A generalized quantum search algorithm, where phase inversions for the marked
state and the prepared state are replaced by phase rotations, is
realized in a 2-qubit NMR heteronuclear system. The quantum algorithm searches
a marked state with a smaller step compared to standard Grover algorithm. Phase
matching requirement in quantum searching is demonstrated by comparing it with
another generalized algorithm where the two phase rotations are and
respectively. Pulse sequences which include non 90 degree pulses are
given.Comment: 12 pages, 2 figures, accepted for publication in Plysics Letters
Hydrogen bond activated glycosylation under mild conditions
Herein, we report a new glycosylation system for the highly efficient and stereoselective formation of glycosidic bonds using glycosyl N-phenyl trifluoroacetimidate (PTFAI) donors and a charged thiourea hydrogen-bond-donor catalyst. The glycosylation protocol features broad substrate scope, controllable stereoselectivity, good to excellent yields and exceptionally mild catalysis conditions. Benefitting from the mild reaction conditions, this new hydrogen bond-mediated glycosylation system in combination with a hydrogen bond-mediated aglycon delivery system provides a reliable method for the synthesis of challenging phenolic glycosides. In addition, a chemoselective glycosylation procedure was developed using different imidate donors (trichloroacetimidates, N-phenyl trifluoroacetimidates, N-4-nitrophenyl trifluoroacetimidates, benzoxazolyl imidates and 6-nitro-benzothiazolyl imidates) and it was applied for a trisaccharide synthesis through a novel one-pot single catalyst strategy.Bio-organic Synthesi
- …