45 research outputs found

    The Tip of an Iceberg: Replication-Associated Functions of the Tumor Suppressor p53.

    Get PDF
    The Tip of an Iceberg: Replication-Associated Functions of the Tumor Suppressor p53.Gottifredi V1, Wiesmüller L2.The tumor suppressor p53 is a transcriptional factor broadly mutated in cancer. Most inactivating and gain of function mutations disrupt the sequence-specific DNA binding domain, which activates target genes. This is perhaps the main reason why most research has focused on the relevance of such transcriptional activity for the prevention or elimination of cancer cells. Notwithstanding, transcriptional regulation may not be the only mechanism underlying its role in tumor suppression and therapeutic responses. In the past, a direct role of p53 in DNA repair transactions that include the regulation of homologous recombination has been suggested. More recently, the localization of p53 at replication forks has been demonstrated and the effect of p53 on nascent DNA elongation has been explored. While some data sets indicate that the regulation of ongoing replication forks by p53 may be mediated by p53 targets such as MDM2 (murine double minute 2) and polymerase (POL) eta other evidences demonstrate that p53 is capable of controlling DNA replication by directly interacting with the replisome and altering its composition. In addition to discussing such findings, this review will also analyze the impact that p53-mediated control of ongoing DNA replication has on treatment responses and tumor suppressor abilities of this important anti-oncogene.Fil: Gottifredi, Vanesa. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Wiesmuller L. Universitat Ulm; Alemani

    Dissecting the role of p53 phosphorylation in homologous recombination provides new clues for gain-of-function mutants

    Get PDF
    Regulation of homologous recombination (HR) represents the best-characterized DNA repair function of p53. The role of p53 phosphorylation in DNA repair is largely unknown. Here, we show that wild-type p53 repressed repair of DNA double-strand breaks (DSBs) by HR in a manner partially requiring the ATM/ATR phosphorylation site, serine 15. Cdk-mediated phosphorylation of serine 315 was dispensable for this anti-recombinogenic effect. However, without targeted cleavage of the HR substrate, serine 315 phosphorylation was necessary for the activation of topoisomerase I-dependent HR by p53. Moreover, overexpression of cyclin A1, which mimics the situation in tumors, inappropriately stimulated DSB-induced HR in the presence of oncogenic p53 mutants (not Wtp53). This effect required cyclin A1/cdk-mediated phosphorylation for stable complex formation with topoisomerase I. We conclude that p53 mutants have lost the balance between activation and repression of HR, which results in a net increase of potentially mutagenic DNA rearrangements. Our data provide new insight into the mechanism underlying gain-of-function of mutant p53 in genomic instability

    Polychlorinated dibenzo-p-dioxins, dibenzofurans and biphenyls in fish from the Netherlands: concentrations, profiles and comparison with DR CALUX® bioassay results

    Get PDF
    Fish from Dutch markets were analysed for concentrations of polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs) and dioxin-like polychlorinated biphenyls (DL-PCBs) and compared with the new European maximum residue levels (MRLs), set in 2006. In a first study on 11 different fish and shellfish from various locations, concentrations of PCDD/Fs were nearly all below the MRL for PCDD/Fs [4 pg toxic equivalents (TEQ) per gram wet weight (ww)] and nearly all below 8 pg total TEQ/g ww, the new MRL for the sum of PCDD/Fs and DL-PCBs. Some samples exceeded the total TEQ MRL, such as anchovy, tuna and sea bass. Furthermore, 20 (out of 39) wild eel samples exceeded the specific MRL for eel (12 pg total TEQ/g ww), as the study revealed PCDD/F TEQ levels of 0.2-7.9 pg TEQ/g ww and total TEQ values of 0.9 to 52 pg/g ww. TEQ levels in farmed and imported eel were lower and complied with the MRLs. Smoking eel, a popular tradition in the Netherlands, only had marginal effects on PCDD/F and DL-PCB concentrations. Owing to volatilization, concentrations of lower-chlorinated PCBs were reduced to below the limit of quantification after smoking. DL-PCBs contributed 61-97% to the total TEQ in all eel samples. This also holds for other fish and shellfish (except shrimps): DL-PCB contributed (on average) from 53 (herring) to 83% (tuna) to the total TEQ. Principal-component analysis revealed distinctive congener profiles for PCDD/Fs and non-ortho PCBs for mussels, pikeperch, herring and various Mediterranean fish. The application of new TCDD toxic equivalency factors (TEFs) set by the World Health Organization in 2006 (to replace the 1997 TEFs) resulted in lower TEQ values, mainly owing to a decreased mono-ortho PCB contribution. This decrease is most pronounced for eel, owing to the relative high mono-ortho PCB concentrations in eel. Consequently, a larger number of samples would comply with the MRLs when the new TEFs are applied. The DR CALUX (R) assay may be used for screening total TEQ levels in eel, in combination with gas chromatography-high resolution mass spectrometry confirmation of suspected samples. An almost 1:1 correlation was found when the 1997 TEFs were applied, but, surprisingly, a 1.4-fold overestimation occurred with application of the 2006 TEFs

    CHARACTERIZATION OF T-HELPER EPITOPES OF THE GLYCOPROTEIN OF VESICULAR STOMATITIS-VIRUS

    No full text
    The T-helper (Th) cell epitopes in the glycoprotein (GP) of vesicular stomatitis virus serotype Indiana (VSV-IND) were analyzed with a complete panel of overlapping synthetic peptides. Three Th-cell epitopes in C57B/6 (H-2(b)) mice and two epitopes in BALB/c (H-2(d)) mice were defined by their ability to stimulate in vitro proliferation of virus-primed, CD8(+) T-cell-depleted spleen cells in a class II-restricted manner. A series of CD4(+), I-A(b)-restricted T-cell hybridomas from VSV-primed C57B/6 mice were characterized by their production of interleukin-2 and interleukin-3 upon stimulation with VSV-IND or purified VSV GP in vitro. Of nine hybridomas derived from three independent fusions five were specific for amino acids (aa) 415 to 433 (p8) of VSV-IND GP, three recognized aa 52 to 71 (p41), and one reacted against aa 316 to 335 (p17). Fluorocytometric analysis of Th hybridomas or VSV-stimulated T-cell lines with monoclonal antibodies specific for the T-cell receptor V beta chain did not reveal obvious correlations between the T-cell receptor V beta gene segment used and the epitope recognized. All three peptides recognized by 11-2(b) mice and both epitopes recognized by H-2(d) mice which were characterized in primed T-cell populations were capable of activating specific Th cells in vivo as measured by the induction of antibody class switch from immunoglobulin M (IgM) to IgG. Thus, the epitopes are relevant for VSV GP-specific Th response in vivo and are able to provide functional help for the production of anti-VSV-specific neutralizing IgG antibodies

    Lipoamino acid-based adjuvant carrier system: Enhanced immunogenicity of group a streptococcal peptide epitopes

    No full text
    Lipoamino acid-based synthetic peptides (lipid core peptides, LCP) derived from the type-specific and conserved region determinants of group A streptococci (GAS) were evaluated as potential candidate sequences in a vaccine to prevent GAS-associated diseases, including rheumatic heart, disease and poststreptococcal acute glomerulonephritis. The LCP peptides had significantly enhanced immunogenicity as compared with the monomeric peptide epitopes. Furthermore, the peptides incorporated into the LCP system generated epitope-specific antibodies without the use of any conventional adjuvant

    Pooled biological specimens for human biomonitoring of environmental chemicals: Opportunities and limitations

    Get PDF
    Biomonitoring has become the ‘gold standard’ in assessing chemical exposures, and plays an important role in risk assessment. The pooling of biological specimens – combining multiple individual specimens into a single sample – can be used in biomonitoring studies to monitor levels of exposure and identify exposure trends, or to identify susceptible populations in a cost-effective manner. Pooled samples provide an estimate of central tendency, and may also reveal information about variation within the population. The development of a pooling strategy requires careful consideration of the type and number of samples collected, the number of pools required, and the number of specimens to combine per pool in order to maximize the type and robustness of the data. Creative pooling strategies can be used to explore exposure-outcome associations, and extrapolation from other larger studies can be useful in identifying elevated exposures in specific individuals. The use of pooled specimens is advantageous as it saves significantly on analytical costs, may reduce the time and resources required for recruitment, and in certain circumstances, allows quantification of samples approaching the limit of detection. In addition, use of pooled samples can provide population estimates while avoiding ethical difficulties that may be associated with reporting individual results
    corecore