154 research outputs found

    A tea catechin, epigallocatechin-3-gallate, is a unique modulator of the farnesoid X receptor

    Get PDF
    Farnesoid X receptor (FXR) is a ligand-activated nuclear receptor and serves as a key regulator to maintain health of the liver and intestine. Bile acids are endogenous ligands of FXR, and there are increasing efforts to identify FXR modulators to serve as biological probes and/or pharmaceutical agents. Natural FXR ligands isolated from plants may serve as models to synthesize novel FXR modulators. In this study, we demonstrated that epigallocatechin-3-gallate (EGCG), a major tea catechin, specifically and dose-dependently activates FXR. In addition, EGCG induced FXR target gene expression in vitro. Surprisingly, in a co-activator (SRC2) recruitment assay, we found that EGCG does not recruit SRC2 to FXR, but it dose-dependently inhibits recruitment of SRC2 to FXR (IC50, 1 μM) by GW6064, which is a potent FXR synthetic ligand. In addition, EGCG suppressed FXR target gene expression induced by either GW4064 or chenodeoxycholic acid in vitro. Furthermore, wild-type and FXR knockout mice treated with an acute dose of EGCG had induced mRNA expression in a subset of FXR target genes in the intestine but not in the liver. In conclusion, EGCG is a unique modulator of FXR in the intestine and may serve as an important model for future development of FXR modulators

    Evidence for the suppression of intermediate anti-ferroelectric ordering and observation of hardening mechanism in Na1/2Bi 1/2TiO3 ceramics through cobalt substitution

    Get PDF
    Co-ion (5 mol %) substitution in Na1/2Bi1/2TiO 3 (NBT) host lattice and their effects on the structural, ferroelectric and dielectric behavior has been investigated thoroughly in this present study. The substituted Co-ion at Ti-site acts an acceptor type doping and hardens (i.e., increase in coercivity) the system without any noticeable change in the remanent polarization values. However, the intermediate antiferroelectric (AFE) ordering which exists between 200 C-280 C in NBT system has been suppressed due to Co-ion substitution, which is an interesting feature for device applications

    Gene expression responses to anti-tuberculous drugs in a whole blood model.

    Get PDF
    BACKGROUND: There is a need for better tools to evaluate new or repurposed TB drugs. The whole blood bactericidal activity (WBA) assay has been advocated for this purpose. We investigated whether transcriptional responses in the WBA assay resemble TB responses in vivo, and whether the approach might additionally reveal mechanisms of action. RESULTS: 1422 of 1798 (79%) of differentially expressed genes in WBA incubated with the standard combination of rifampicin, isoniazid, pyrazinamide and ethambutol were also expressed in sputum (P < 0.0001) obtained from patients taking the same combination of drugs; these comprised well-established treatment-response genes. Gene expression profiles in WBA incubated with the standard drugs individually, or with moxifloxacin or faropenem (with amoxicillin and clavulanic acid) clustered by individual drug exposure. Distinct pathways were detected for individual drugs, although only with isoniazid did these relate to known mechanisms of drug action. CONCLUSIONS: Substantial agreement between whole blood cultures and sputum and the ability to differentiate individual drugs suggest that transcriptomics may add value to the whole blood assay for evaluating new TB drugs

    EthA/R-Independent Killing of Mycobacterium tuberculosis by Ethionamide.

    Get PDF
    Ethionamide (ETH) is part of the drug arsenal available to treat multi-drug resistant tuberculosis. The current paradigm of this pro-drug activation involves the mycobacterial enzyme EthA and the transcriptional repressor, EthR. However, several lines of evidence suggest the involvement of additional players. The ethA/R locus was deleted in Mycobacterium bovis BCG and three Mycobacterium tuberculosis (MTB) strains. While complete resistance to ETH was observed with BCG ethA/R KO, drug susceptibility and dose-dependent killing were retained in the ethA/R KO MTB mutants, suggesting the existence of an alternative pathway of ETH bio-activation in MTB. We further demonstrated that this alternative pathway is EthR-independent, whereby re-introduction of ethR in ethA/R KO MTB did not lead to increased resistance to ETH. Consistently, ethA KO MTB (with intact ethR expression) displayed similar ETH susceptibility profile as their ethA/R KO counterparts. To identify the alternative ETH bio-activator, spontaneous ETH-resistant mutants were obtained from ethA/R KO MTB and whole genome sequencing identified single nucleotide polymorphisms in mshA, involved in mycothiol biosynthesis and previously linked to ETH resistance. Deletion of mshA in ethA/R KO MTB led to complete ETH resistance, supporting that the role of MshA in ETH killing is EthA/R-independent. Furthermore mshA single KO MTB displayed levels of ETH resistance similar or greater than those obtained with ethA/R KO strains, supporting that mshA is as critical as ethA/R for ETH killing efficacy

    A blood RNA transcript signature for TB exposure in household contacts.

    Get PDF
    BACKGROUND: Current tools for diagnosing latent TB infection (LTBI) detect immunological memory of past exposure but are unable to determine whether exposure is recent. We sought to identify a whole-blood transcriptome signature of recent TB exposure. METHODS: We studied household contacts of TB patients; healthy volunteers without recent history of TB exposure; and patients with active TB. We performed whole-blood RNA sequencing (in all), an interferon gamma release assay (IGRA; in contacts and healthy controls) and PET/MRI lung scans (in contacts only). We evaluated differentially-expressed genes in household contacts (log2 fold change ≥1 versus healthy controls; false-discovery rate  0.19). CONCLUSIONS: Transcriptomics can detect TB exposure and, with further development, may be an approach of value for epidemiological research and targeting public health interventions

    Metadherin Mediates Lipopolysaccharide-Induced Migration and Invasion of Breast Cancer Cells

    Get PDF
    BACKGROUND: Breast cancer is the most prevalent cancer in women worldwide and metastatic breast cancer has very poor prognosis. Inflammation has been implicated in migration and metastasis of breast cancer, although the exact molecular mechanism remains elusive. PRINCIPAL FINDINGS: We show that the pro-inflammatory endotoxin Lipopolysaccharide (LPS) upregulates the expression of Metadherin (MTDH), a recently identified oncogene, in a number of breast cancer lines. Stable knockdown of MTDH by shRNA in human breast MDA-MB-231 cells abolishes LPS-induced cell migration and invasion as determined by several in vitro assays. In addition, knockdown of MTDH diminishes Nuclear Factor-kappa B (NF-κB) activation by LPS and inhibited LPS-induced IL-8 and MMP-9 production. CONCLUSIONS: These results strongly suggest that MTDH is a pivotal molecule in inflammation-mediated tumor metastasis. Since NF-κB, IL-8 and MMP-9 play roles in LPS-induced invasion or metastasis, the mechanism of MTDH-promoted invasion and metastasis may be through the activation of NF-κB, IL-8 and MMP-9, also suggesting a role of MTDH in regulating both inflammatory responses and inflammation-associated tumor invasion. These findings indicate that MTDH is involved in inflammation-induced tumor progression, and support that MTDH targeting therapy may hold promising prospects in treating breast cancer

    Methodology and experiences of rapid advice guideline development for children with COVID-19: responding to the COVID-19 outbreak quickly and efficiently

    Get PDF
    BACKGROUND: Rapid Advice Guidelines (RAG) provide decision makers with guidance to respond to public health emergencies by developing evidence-based recommendations in a short period of time with a scientific and standardized approach. However, the experience from the development process of a RAG has so far not been systematically summarized. Therefore, our working group will take the experience of the development of the RAG for children with COVID-19 as an example to systematically explore the methodology, advantages, and challenges in the development of the RAG. We shall propose suggestions and reflections for future research, in order to provide a more detailed reference for future development of RAGs. RESULT: The development of the RAG by a group of 67 researchers from 11 countries took 50 days from the official commencement of the work (January 28, 2020) to submission (March 17, 2020). A total of 21 meetings were held with a total duration of 48 h (average 2.3 h per meeting) and an average of 16.5 participants attending. Only two of the ten recommendations were fully supported by direct evidence for COVID-19, three recommendations were supported by indirect evidence only, and the proportion of COVID-19 studies among the body of evidence in the remaining five recommendations ranged between 10 and 83%. Six of the ten recommendations used COVID-19 preprints as evidence support, and up to 50% of the studies with direct evidence on COVID-19 were preprints. CONCLUSIONS: In order to respond to public health emergencies, the development of RAG also requires a clear and transparent formulation process, usually using a large amount of indirect and non-peer-reviewed evidence to support the formation of recommendations. Strict following of the WHO RAG handbook does not only enhance the transparency and clarity of the guideline, but also can speed up the guideline development process, thereby saving time and labor costs

    Methodology and experiences of rapid advice guideline development for children with COVID-19: responding to the COVID-19 outbreak quickly and efficiently.

    Get PDF
    BACKGROUND Rapid Advice Guidelines (RAG) provide decision makers with guidance to respond to public health emergencies by developing evidence-based recommendations in a short period of time with a scientific and standardized approach. However, the experience from the development process of a RAG has so far not been systematically summarized. Therefore, our working group will take the experience of the development of the RAG for children with COVID-19 as an example to systematically explore the methodology, advantages, and challenges in the development of the RAG. We shall propose suggestions and reflections for future research, in order to provide a more detailed reference for future development of RAGs. RESULT The development of the RAG by a group of 67 researchers from 11 countries took 50 days from the official commencement of the work (January 28, 2020) to submission (March 17, 2020). A total of 21 meetings were held with a total duration of 48 h (average 2.3 h per meeting) and an average of 16.5 participants attending. Only two of the ten recommendations were fully supported by direct evidence for COVID-19, three recommendations were supported by indirect evidence only, and the proportion of COVID-19 studies among the body of evidence in the remaining five recommendations ranged between 10 and 83%. Six of the ten recommendations used COVID-19 preprints as evidence support, and up to 50% of the studies with direct evidence on COVID-19 were preprints. CONCLUSIONS In order to respond to public health emergencies, the development of RAG also requires a clear and transparent formulation process, usually using a large amount of indirect and non-peer-reviewed evidence to support the formation of recommendations. Strict following of the WHO RAG handbook does not only enhance the transparency and clarity of the guideline, but also can speed up the guideline development process, thereby saving time and labor costs

    Glucocorticoid Receptor and Sequential P53 Activation by Dexamethasone Mediates Apoptosis and Cell Cycle Arrest of Osteoblastic MC3T3-E1 Cells

    Get PDF
    Glucocorticoids play a pivotal role in the proliferation of osteoblasts, but the underlying mechanism has not been successfully elucidated. In this report, we have investigated the molecular mechanism which elucidates the inhibitory effects of dexamethasone on murine osteoblastic MC3T3-E1 cells. It was found that the inhibitory effects were largely attributed to apoptosis and G1 phase arrest. Both the cell cycle arrest and apoptosis were dependent on glucocorticoid receptor (GR), as they were abolished by GR blocker RU486 pre-treatment and GR interference. G1 phase arrest and apoptosis were accompanied with a p53-dependent up-regulation of p21 and pro-apoptotic genes NOXA and PUMA. We also proved that dexamethasone can’t induce apoptosis and cell cycle arrest when p53 was inhibited by p53 RNA interference. These data demonstrate that proliferation of MC3T3-E1 cell was significantly and directly inhibited by dexamethasone treatment via aberrant GR activation and subsequently P53 activation
    corecore