124 research outputs found

    Genetic variation of Glucose Transporter-1 (GLUT1) and albuminuria in 10,278 European Americans and African Americans: a case-control study in the Atherosclerosis Risk in Communities (ARIC) Study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Evidence suggests glucose transporter-1(<it>GLUT1</it>) genetic variation affects diabetic nephropathy and albuminuria. Our aim was to evaluate associations with albuminuria of six <it>GLUT1 </it>single nucleotide polymorphisms(SNPs), particularly <it>XbaI </it>and the previously associated <it>Enhancer-2(Enh2</it>) SNP.</p> <p>Methods</p> <p>A two-stage case-control study was nested in a prospective cohort study of 2156 African Americans and 8122 European Americans with urinary albumin-to-creatinine ratio(ACR). Cases comprised albuminuria(N = 825; ≄ 30 ÎŒg/mg) and macroalbuminuria(N = 173; ≄ 300 ÎŒg/mg). ACR < 30 ÎŒg/mg classified controls(n = 9453). Logistic regression and odds ratios(OR) assessed associations. The evaluation phase(stage 1, n = 2938) tested associations of albuminuria(n = 305) with six <it>GLUT1 </it>SNPs: rs841839, rs3768043, rs2297977, <it>Enh2</it>(rs841847) <it>Xba</it>I(rs841853), and rs841858. <it>Enh2 </it>was examined separately in the replication phase(stage 2, n = 7340) and the total combined sample (n = 10,278), with all analyses stratified by race and type 2 diabetes.</p> <p>Results</p> <p>In European Americans, after adjusting for diabetes and other <it>GLUT1 </it>SNPs in stage 1, <it>Enh2 </it>risk genotype(TT) was more common in albuminuric cases(OR = 3.37, P = 0.090) whereas <it>XbaI </it>(OR = 0.94, p = 0.931) and remaining SNPs were not. In stage 1, the <it>Enh2 </it>association with albuminuria was significant among diabetic European Americans(OR = 2.36, P = 0.025). In African Americans, <it>Enh2 </it>homozygosity was rare(0.3%); <it>XbaI </it>was common(18.0% AA) and not associated with albuminuria. In stage 2(n = 7,340), <it>Enh2 </it>risk genotype had increased but non-significant OR among diabetic European Americans(OR = 1.66, P = 0.192) and not non-diabetics(OR = 0.99, p = 0.953), not replicating stage 1. Combining stages 1 and 2, <it>Enh2 </it>was associated with albuminuria(OR 2.14 [1.20-3.80], P = 0.009) and macroalbuminuria(OR 2.69, [1.02-7.09], P = 0.045) in diabetic European Americans. The <it>Enh2 </it>association with macroalbuminuria among non-diabetic European Americans with fasting insulin(OR = 1.84, P = 0.210) was stronger at the highest insulin quartile(OR = 4.08, P = 0.040).</p> <p>Conclusions</p> <p>As demonstrated with type 1 diabetic nephropathy, the <it>GLUT1 Enh2 </it>risk genotype, instead of <it>Xba</it>I, may be associated with type 2 diabetic albuminuria among European Americans, though an association is not conclusive. The association among diabetic European Americans found in stage 1 was not replicated in stage 2; however, this risk association was evident after combining all diabetic European Americans from both stages. Additionally, our results suggest this association may extend to non-diabetics with high insulin concentrations. Rarity of the <it>Enh2 </it>risk genotype among African Americans precludes any definitive conclusions, although data suggest a risk-enhancing role.</p

    A Nonluminescent and Highly Virulent Vibrio harveyi Strain Is Associated with “Bacterial White Tail Disease” of Litopenaeus vannamei Shrimp

    Get PDF
    Recurrent outbreaks of a disease in pond-cultured juvenile and subadult Litopenaeus vannamei shrimp in several districts in China remain an important problem in recent years. The disease was characterized by “white tail” and generally accompanied by mass mortalities. Based on data from the microscopical analyses, PCR detection and 16S rRNA sequencing, a new Vibrio harveyi strain (designated as strain HLB0905) was identified as the etiologic pathogen. The bacterial isolation and challenge tests demonstrated that the HLB0905 strain was nonluminescent but highly virulent. It could cause mass mortality in affected shrimp during a short time period with a low dose of infection. Meanwhile, the histopathological and electron microscopical analysis both showed that the HLB0905 strain could cause severe fiber cell damages and striated muscle necrosis by accumulating in the tail muscle of L. vannamei shrimp, which led the affected shrimp to exhibit white or opaque lesions in the tail. The typical sign was closely similar to that caused by infectious myonecrosis (IMN), white tail disease (WTD) or penaeid white tail disease (PWTD). To differentiate from such diseases as with a sign of “white tail” but of non-bacterial origin, the present disease was named as “bacterial white tail disease (BWTD)”. Present study revealed that, just like IMN and WTD, BWTD could also cause mass mortalities in pond-cultured shrimp. These results suggested that some bacterial strains are changing themselves from secondary to primary pathogens by enhancing their virulence in current shrimp aquaculture system

    Novel Biomarkers Distinguishing Active Tuberculosis from Latent Infection Identified by Gene Expression Profile of Peripheral Blood Mononuclear Cells

    Get PDF
    BACKGROUND: Humans infected with Mycobacterium tuberculosis (MTB) can delete the pathogen or otherwise become latent infection or active disease. However, the factors influencing the pathogen clearance and disease progression from latent infection are poorly understood. This study attempted to use a genome-wide transcriptome approach to identify immune factors associated with MTB infection and novel biomarkers that can distinguish active disease from latent infection. METHODOLOGY/PRINCIPAL FINDINGS: Using microarray analysis, we comprehensively determined the transcriptional difference in purified protein derivative (PPD) stimulated peripheral blood mononuclear cells (PBMCs) in 12 individuals divided into three groups: TB patients (TB), latent TB infection individuals (LTBI) and healthy controls (HC) (n = 4 per group). A transcriptional profiling of 506 differentially expressed genes could correctly group study individuals into three clusters. Moreover, 55- and 229-transcript signatures for tuberculosis infection (TB&LTBI) and active disease (TB) were identified, respectively. The validation study by quantitative real-time PCR (qPCR) performed in 83 individuals confirmed the expression patterns of 81% of the microarray identified genes. Decision tree analysis indicated that three genes of CXCL10, ATP10A and TLR6 could differentiate TB from LTBI subjects. Additional validation was performed to assess the diagnostic ability of the three biomarkers within 36 subjects, which yielded a sensitivity of 71% and specificity of 89%. CONCLUSIONS/SIGNIFICANCE: The transcription profiles of PBMCs induced by PPD identified distinctive gene expression patterns associated with different infectious status and provided new insights into human immune responses to MTB. Furthermore, this study indicated that a combination of CXCL10, ATP10A and TLR6 could be used as novel biomarkers for the discrimination of TB from LTBI

    Autocatalytic Activation of the Furin Zymogen Requires Removal of the Emerging Enzyme's N-Terminus from the Active Site

    Get PDF
    Before furin can act on protein substrates, it must go through an ordered process of activation. Similar to many other proteinases, furin is synthesized as a zymogen (profurin) which becomes active only after the autocatalytic removal of its auto-inhibitory prodomain. We hypothesized that to activate profurin its prodomain had to be removed and, in addition, the emerging enzyme's N-terminus had to be ejected from the catalytic cleft.We constructed and analyzed the profurin mutants in which the egress of the emerging enzyme's N-terminus from the catalytic cleft was restricted. Mutants were autocatalytically processed at only the primary cleavage site Arg-Thr-Lys-Arg(107) downward arrowAsp(108), but not at both the primary and the secondary (Arg-Gly-Val-Thr-Lys-Arg(75) downward arrowSer(76)) cleavage sites, yielding, as a result, the full-length prodomain and mature furins commencing from the N-terminal Asp108. These correctly processed furin mutants, however, remained self-inhibited by the constrained N-terminal sequence which continuously occupied the S' sub-sites of the catalytic cleft and interfered with the functional activity. Further, using the in vitro cleavage of the purified prodomain and the analyses of colon carcinoma LoVo cells with the reconstituted expression of the wild-type and mutant furins, we demonstrated that a three-step autocatalytic processing including the cleavage of the prodomain at the previously unidentified Arg-Leu-Gln-Arg(89) downward arrowGlu(90) site, is required for the efficient activation of furin.Collectively, our results show the restrictive role of the enzyme's N-terminal region in the autocatalytic activation mechanisms. In a conceptual form, our data apply not only to profurin alone but also to a range of self-activated proteinases

    Clinical, biochemical and genetic spectrum of 70 patients with ACAD9 deficiency: Is riboflavin supplementation effective?

    Get PDF
    Background: Mitochondrial acyl-CoA dehydrogenase family member 9 (ACAD9) is essential for the assembly of mitochondrial respiratory chain complex I. Disease causing biallelic variants in ACAD9 have been reported in individuals presenting with lactic acidosis and cardiomyopathy. Results: We describe the genetic, clinical and biochemical findings in a cohort of 70 patients, of whom 29 previously unpublished. We found 34 known and 18 previously unreported variants in ACAD9. No patients harbored biallelic loss of function mutations, indicating that this combination is unlikely to be compatible with life. Causal pathogenic variants were distributed throughout the entire gene, and there was no obvious genotype-phenotype correlation. Most of the patients presented in the first year of life. For this subgroup the survival was poor (50% not surviving the first 2 years) comparing to patients with a later presentation (more than 90% surviving 10 years). The most common clinical findings were cardiomyopathy (85%), muscular weakness (75%) and exercise intolerance (72%). Interestingly, severe intellectual deficits were only reported in one patient and

    Novel Prognostic and Therapeutic Targets for Oral Squamous Cell Carcinoma

    Get PDF
    In oral squamous cell carcinoma (OSCC), metastasis to lymph nodes is associated with a 50% reduction in 5-year survival. To identify a metastatic gene set based on DNA copy number abnormalities (CNAs) of differentially expressed genes, we compared DNA and RNA of OSCC cells laser-microdissected from non-metastatic primary tumors (n = 17) with those from lymph node metastases (n = 20), using Affymetrix 250K Nsp single-nucleotide polymorphism (SNP) arrays and U133 Plus 2.0 arrays, respectively. With a false discovery rate (FDR)<5%, 1988 transcripts were found to be differentially expressed between primary and metastatic OSCC. Of these, 114 were found to have a significant correlation between DNA copy number and gene expression (FDR<0.01). Among these 114 correlated transcripts, the corresponding genomic regions of each of 95 transcripts had CNAs differences between primary and metastatic OSCC (FDR<0.01). Using an independent dataset of 133 patients, multivariable analysis showed that the OSCC-specific and overall mortality hazards ratio (HR) for patients carrying the 95-transcript signature were 4.75 (95% CI: 2.03-11.11) and 3.45 (95% CI: 1.84-6.50), respectively. To determine the degree by which these genes impact cell survival, we compared the growth of five OSCC cell lines before and after knockdown of over-amplified transcripts via a high-throughput siRNA-mediated screen. The expression-knockdown of 18 of the 26 genes tested showed a growth suppression ≄ 30% in at least one cell line (P<0.01). In particular, cell lines derived from late-stage OSCC were more sensitive to the knockdown of G3BP1 than cell lines derived from early-stage OSCC, and the growth suppression was likely caused by increase in apoptosis. Further investigation is warranted to examine the biological role of these genes in OSCC progression and their therapeutic potentials

    Clinical, biochemical and genetic spectrum of 70 patients with ACAD9 deficiency: is riboflavin supplementation effective?

    Get PDF
    BACKGROUND: Mitochondrial acyl-CoA dehydrogenase family member 9 (ACAD9) is essential for the assembly of mitochondrial respiratory chain complex I. Disease causing biallelic variants in ACAD9 have been reported in individuals presenting with lactic acidosis and cardiomyopathy. RESULTS: We describe the genetic, clinical and biochemical findings in a cohort of 70 patients, of whom 29 previously unpublished. We found 34 known and 18 previously unreported variants in ACAD9. No patients harbored biallelic loss of function mutations, indicating that this combination is unlikely to be compatible with life. Causal pathogenic variants were distributed throughout the entire gene, and there was no obvious genotype-phenotype correlation. Most of the patients presented in the first year of life. For this subgroup the survival was poor (50% not surviving the first 2 years) comparing to patients with a later presentation (more than 90% surviving 10 years). The most common clinical findings were cardiomyopathy (85%), muscular weakness (75%) and exercise intolerance (72%). Interestingly, severe intellectual deficits were only reported in one patient and severe developmental delays in four patients. More than 70% of the patients were able to perform the same activities of daily living when compared to peers. CONCLUSIONS: Our data show that riboflavin treatment improves complex I activity in the majority of patient-derived fibroblasts tested. This effect was also reported for most of the treated patients and is mirrored in the survival data. In the patient group with disease-onset below 1 year of age, we observed a statistically-significant better survival for patients treated with riboflavin

    Intensification of Northern Hemisphere subtropical highs in a warming climate

    Get PDF
    Semi-permanent high-pressure systems over the subtropical oceans, known as subtropical highs, influence atmospheric circulation, as well as global climate. For instance, subtropical highs largely determine the location of the world’s subtropical deserts, the zones of Mediterranean climate and the tracks of tropical cyclones. The intensity of two such high-pressure systems, present over the Northern Hemisphere oceans during the summer, has changed in recent years. However, whether such changes are related to climate warming remains unclear. Here, we use climate model simulations from the Intergovernmental Panel on Climate Change Fourth Assessment Report, reanalysis data from the 40-year European Centre for Medium-Range Weather Forecasts, and an idealized general circulation model, to assess future changes in the intensity of summertime subtropical highs over the Northern Hemisphere oceans. The simulations suggest that these summertime highs will intensify in the twenty-first century as a result of an increase in atmospheric greenhouse-gas concentrations. We further show that the intensification of subtropical highs is predominantly caused by an increase in thermal contrast between the land and ocean. We suggest that summertime near-surface subtropical highs could play an increasingly important role in regional climate and hydrological extremes in the future
    • 

    corecore