778 research outputs found
Species sensitivity of zeolite minerals for uptake of mercury solutes
The uptake of inorganic Hg2+ and organometallic CH3Hg+ from aqueous solutions by 11 different natural zeolites has been investigated using a batch distribution coefficient (Kd) method and supported by a preliminary voltammetric study. The effect of mercury concentration on theKd response is shown over an environmentally appropriate concentration range of 0.1-5 ppm inorganic and organometallic Hg using a batch factor of 100 ml g−1 and 20 h equilibration. Analcime and a Na-chabazite displayed the greatest methylmercury uptakes (Kd values at 1.5 ppm of 4023 and 3456, respectively), with mordenite as the smallest at 578. All uptake responses were greater for methylmercury than for the inorganic mercuric nitrate solutions, suggesting a distinctive sensitivity of zeolites to reaction with different types of solute species. It is likely that this sensitivity is attributable to the precise nature of the resultant Hg-zeolite bonds. Additionally, both the Si-Al ratio and the Na content of the initial natural zeolite samples are shown to influence the Kd responses, with positive correlations between Kd and Na content for all zeolites excluding mordenite
Particle-scale structure in frozen colloidal suspensions from small angle X-ray scattering
During directional solidification of the solvent in a colloidal suspension, the colloidal particles segregate from the growing solid, forming high-particle-density regions with structure on a hierarchy of length scales ranging from that of the particle-scale packing to the large-scale spacing between these regions. Previous work has mostly concentrated on the medium- to large-length scale structure, as it is the most accessible and thought to be more technologically relevant. However, the packing of the colloids at the particle-scale is an important component not only in theoretical descriptions of the segregation process, but also to the utility of freeze-cast materials for new applications. Here we present the results of experiments in which we investigated this structure across a wide range of length scales using a combination of small angle X-ray scattering and direct optical imaging. As expected, during freezing the particles were concentrated into regions between ice dendrites forming a microscopic pattern of high- and low-particle-density regions. X-ray scattering indicates that the particles in the high density regions were so closely packed as to be touching. However, the arrangement of the particles does not conform to that predicted by any standard inter-particle pair potentials, suggesting that the particle packing induced by freezing differs from that formed during equilibrium or steady-state densification processes
Evolving mass spectra of the oxidized component of organic aerosol: results from aerosol mass spectrometer analyses of aged diesel emissions
International audienceThe species and chemistry responsible for secondary organic aerosol (SOA) formation remain highly uncertain. Laboratory studies of the oxidation of individual, high-flux SOA precursors do not lead to particles with mass spectra (MS) matching those of ambient aged organic material. Additionally, the complexity of real organic particles challenges efforts to identify their chemical origins. We have previously hypothesized that SOA can form from the atmospheric oxidation of a large suite of precursors with varying vapor pressures. Here, we support this hypothesis by using an aerosol mass spectrometer to track the chemical evolution of diesel exhaust as it is photochemically oxidized in an environmental chamber. With explicit knowledge of the condensed-phase MS of the primary emissions from our engine, we are able to decompose each recorded MS into contributing primary and secondary spectra throughout the experiment. We find that the SOA becomes increasingly oxidized as a function of time, quickly approaching a final MS that closely resembles that of ambient aged organic particulate matter. This observation is consistent with our hypothesis of an evolving suite of SOA precursors. Low vapor pressure, semi-volatile organic emissions can form condensable products with even a single generation of oxidation, resulting in an early-arising, relatively less-oxidized SOA. Continued gas-phase oxidation can form highly oxidized SOA in surprisingly young air masses via reaction mechanisms that can add multiple oxygen atoms per generation and result in products with sustained or increased reactivity toward OH
Engaging teenagers with genetics and genomics through a school-based competition: Pilot evaluation
As part of a university outreach programme, the authors ran an interschool competition encouraging youngpeople (year 10, age 14–15) to explore their ideas about the likely social impacts of whole genome screening. Schoolsparticipating in the competition selected teams of 4–5 young people who participated in a one day workshop. Thisworkshop provided an introduction to whole genome screening, what it is and what it might (and might not) be able totell us about our future health. The workshop also included sessions on communicating scientific ideas through film (e.g.storyboarding and basic editing). Students were then instructed to create a 4–6 minute film about genomics and whatissues it might present for individuals and/or society. Students reconvened for a second workshop to view and discuss thefilms created. This paper focuses on a thematic analysis of the films entered in the competition, exploring the issues thatstudents raise. In addition to the thematic analysis, quantitative and qualitative data were collected that enable apreliminary exploration of student learning. This will be explored in the context of what students of this age already knowand how they have built upon this learning during the competition
Climate vulnerability assessment for Pacific salmon and steelhead in the California Current Large Marine Ecosystem.
Major ecological realignments are already occurring in response to climate change. To be successful, conservation strategies now need to account for geographical patterns in traits sensitive to climate change, as well as climate threats to species-level diversity. As part of an effort to provide such information, we conducted a climate vulnerability assessment that included all anadromous Pacific salmon and steelhead (Oncorhynchus spp.) population units listed under the U.S. Endangered Species Act. Using an expert-based scoring system, we ranked 20 attributes for the 28 listed units and 5 additional units. Attributes captured biological sensitivity, or the strength of linkages between each listing unit and the present climate; climate exposure, or the magnitude of projected change in local environmental conditions; and adaptive capacity, or the ability to modify phenotypes to cope with new climatic conditions. Each listing unit was then assigned one of four vulnerability categories. Units ranked most vulnerable overall were Chinook (O. tshawytscha) in the California Central Valley, coho (O. kisutch) in California and southern Oregon, sockeye (O. nerka) in the Snake River Basin, and spring-run Chinook in the interior Columbia and Willamette River Basins. We identified units with similar vulnerability profiles using a hierarchical cluster analysis. Life history characteristics, especially freshwater and estuary residence times, interplayed with gradations in exposure from south to north and from coastal to interior regions to generate landscape-level patterns within each species. Nearly all listing units faced high exposures to projected increases in stream temperature, sea surface temperature, and ocean acidification, but other aspects of exposure peaked in particular regions. Anthropogenic factors, especially migration barriers, habitat degradation, and hatchery influence, have reduced the adaptive capacity of most steelhead and salmon populations. Enhancing adaptive capacity is essential to mitigate for the increasing threat of climate change. Collectively, these results provide a framework to support recovery planning that considers climate impacts on the majority of West Coast anadromous salmonids
Albumin Yanomama-2, a ‘private’ polymorphism of serum albumin
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65429/1/j.1469-1809.1974.tb01949.x.pd
Human serum albumin: twenty-three genetic variants and their population distribution
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66001/1/j.1469-1809.1973.tb00602.x.pd
- …
