1,761 research outputs found
Spectral line profiles changed by dust scattering in heavily obscured young stellar objects
It is known that scattering of radiation by circumstellar dust can strongly
change the line profiles in stellar spectra. This hampers the analysis of
spectral lines originating in the emitting regions of heavily obscured young
stars. To calculate the line profile of the scattered radiation, we suggest to
use the approximation of remote scattering particles. This approximation
assumes that the scattering dust grains are at a distance from the star that is
much larger than the characteristic size of the emitting region. Using this
method, we calculated the line profiles of several simple models. They show the
H alpha line profiles of Herbig AeBe stars in the presence and absence of
motionless or moving dust
The dusty torus in the Circinus galaxy: a dense disk and the torus funnel
(Abridged) With infrared interferometry it is possible to resolve the nuclear
dust distributions that are commonly associated with the dusty torus in active
galactic nuclei (AGN). The Circinus galaxy hosts the closest Seyfert 2 nucleus
and previous interferometric observations have shown that its nuclear dust
emission is well resolved.
To better constrain the dust morphology in this active nucleus, extensive new
observations were carried out with MIDI at the Very Large Telescope
Interferometer.
The emission is distributed in two distinct components: a disk-like emission
component with a size of ~ 0.2 1.1 pc and an extended component with a
size of ~ 0.8 1.9 pc. The disk-like component is elongated along PA ~
46{\deg} and oriented perpendicular to the ionisation cone and outflow. The
extended component is elongated along PA ~ 107{\deg}, roughly perpendicular to
the disk component and thus in polar direction. It is interpreted as emission
from the inner funnel of an extended dust distribution and shows a strong
increase in the extinction towards the south-east. We find no evidence of an
increase in the temperature of the dust towards the centre. From this we infer
that most of the near-infrared emission probably comes from parsec scales as
well. We further argue that the disk component alone is not sufficient to
provide the necessary obscuration and collimation of the ionising radiation and
outflow. The material responsible for this must instead be located on scales of
~ 1 pc, surrounding the disk.
The clear separation of the dust emission into a disk-like emitter and a
polar elongated source will require an adaptation of our current understanding
of the dust emission in AGN. The lack of any evidence of an increase in the
dust temperature towards the centre poses a challenge for the picture of a
centrally heated dust distribution.Comment: 30 pages, 12 figures; A&A in pres
Monte-Carlo radiative transfer simulation of the circumstellar disk of the Herbig Ae star HD 144432
Studies of pre-transitional disks, with a gap region between the inner
infrared-emitting region and the outer disk, are important to improving our
understanding of disk evolution and planet formation. Previous infrared
interferometric observations have shown hints of a gap region in the
protoplanetary disk around the Herbig Ae star HD~144432. We study the dust
distribution around this star with two-dimensional radiative transfer modeling.
We compare the model predictions obtained via the Monte-Carlo radiative
transfer code RADMC-3D with infrared interferometric observations and the
{\SED} of HD~144432. The best-fit model that we found consists of an inner
optically thin component at 0.21\enDash0.32~\AU and an optically thick outer
disk at 1.4\enDash10~\AU. We also found an alternative model in which the
inner sub-AU region consists of an optically thin and an optically thick
component. Our modeling suggests an optically thin component exists in the
inner sub-AU region, although an optically thick component may coexist in the
same region. Our modeling also suggests a gap-like discontinuity in the disk of
HD~144432.Comment: 18 pages, 12 figure
Analysis of interdiffusion of Dy, Nd, and Pr in Mg
The diffusion characteristics of Mg–rare-earth diffusion couples were studied. Cylinders of pure Mg and rare earth (Dy, Nd, and Pr) were abutted and annealed at 500 °C for 100 h or 300 h. Point-by-point composition profiles were collected starting in pure Mg, across the diffusion zone, and ending in the pure rare earth, using energy dispersive x-ray spectroscopy with a scanning electron microscope. The intermetallic phases that resulted due to diffusion were identified and compared to existing phase diagrams, for which the data is limited. For each diffusion couple, a plot of concentration versus distance perpendicular to the original plane of contact was obtained and analyzed using the Boltzman–Matano method. The interdiffusion coefficients for each set of phases were then calculated. The results show that diffusion through the intermetallic phases is much slower than is expected in a solid solution
Buckling and crush resistance of high-density TRIP-steel and TRIP-matrix composite honeycombs to out-of-plane compressive load
AbstractThe mechanical and structural responses of high-density TRIP steel and TRIP-steel/zirconia composite honeycomb structures were studied under uniaxial compression in the out-of-plane loading direction over a wide range of strain rates. Their mechanical response, buckling, and failure mechanisms differ considerably from those of conventional thin-walled, low-density cellular structures. Following the linear-elastic regime and the yield limit of the bulk material, the high-density square honeycombs exhibited a uniform increase in compression stress over an extended range of (stable) plastic deformation. This plastic pre-buckling stage with axial crushing of cell walls correlates with the uniaxial compressive response of the bulk specimens tested. The dominating material effects were the pronounced strain hardening of the austenitic steel matrix accompanied by a strain-induced α’-martensite nucleation (TRIP effect) and the strengthening effect due to the zirconia particle reinforcement. The onset of critical plastic bifurcation was initiated at high compressive loads governed by local or global cell wall deflections. After exceeding the compressive peak stress (maximum loading limit), the honeycombs underwent either a continuous post-buckling mode with a folding collapse (lower relative density) or a symmetric extensional collapse mode of the entire frame (high relative density). The densification strain and the post-buckling or plateau stress were determined by the energy efficiency method. Apart from relative density, the crush resistance and deformability of the honeycombs were highly influenced by the microstructure and damage evolution in the cell walls as well as the bulk material’s strain-rate sensitivity. A significant increase in strain rate against quasi-static loading resulted in a measured enhancement of deformation temperature associated with material softening. As a consequence, the compressive peak stress and the plastic failure strain at the beginning of post-buckling showed an anomaly with respect to strain rate indicated by minimum values under medium loading-rate conditions. The development of the temperature gradient in the stable pre-buckling stage could be predicted well by a known constitutive model for quasi-adiabatic heating
Spectral pattern similarity analysis: Tutorial and application in developmental cognitive neuroscience
The human brain encodes information in neural activation patterns. While standard approaches to analyzing neural data focus on brain (de-)activation (e.g., regarding the location, timing, or magnitude of neural responses), multivariate neural pattern similarity analyses target the informational content represented by neural activity. In adults, a number of representational properties have been identified that are linked to cognitive performance, in particular the stability, distinctiveness, and specificity of neural patterns. However, although growing cognitive abilities across childhood suggest advancements in representational quality, developmental studies still rarely utilize information-based pattern similarity approaches, especially in electroencephalography (EEG) research. Here, we provide a comprehensive methodological introduction and step-by-step tutorial for pattern similarity analysis of spectral (frequency-resolved) EEG data including a publicly available pipeline and sample dataset with data from children and adults. We discuss computation of single-subject pattern similarities and their statistical comparison at the within-person to the between-group level as well as the illustration and interpretation of the results. This tutorial targets both novice and more experienced EEG researchers and aims to facilitate the usage of spectral pattern similarity analyses, making these methodologies more readily accessible for (developmental) cognitive neuroscientists
Hubble Space Telescope NICMOS Imaging of W3 IRS 5: A Trapezium in the Making?
We present Hubble Space Telescope NICMOS imaging of W3 IRS 5, a binary
high-mass protostar. In addition to the two protostars, NICMOS images taken in
the F222M and F160W filters show three new 2.22 micron sources with very red
colors; these sources fall within a region 5600 AU in diameter, and are
coincident with a 100 solar mass dense molecular clump. Two additional point
sources are found within 0.4'' (800 AU) of one of the high-mass protostars;
these may be stellar companions or unresolved emission knots from an outflow.
We propose that these sources constitute a nascent Trapezium system in the
center of the W3 IRS 5 cluster containing as many as five proto OB stars. This
would be the first identification of a Trapezium still deeply embedded in its
natal gas.Comment: accepted to ApJ letter
- …