1,101 research outputs found

    Sound Based Positioning

    Get PDF
    With a growing interest in non-GPS positioning, navigation, and timing (PNT), sound based positioning provides a precise way to locate both sound sources and microphones through audible signals of opportunity (SoOPs). Exploiting SoOPs allows for passive location estimation. But, attributing each signal to a specific source location when signals are simultaneously emitting proves problematic. Using an array of microphones, unique SoOPs are identified and located through steered response beamforming. Sound source signals are then isolated through time-frequency masking to provide clear reference stations by which to estimate the location of a separate microphone through time difference of arrival measurements. Results are shown for real data

    Manual for extending the laser specklegram technique to strain analysis of rotating components

    Get PDF
    The theory, techniques, and equipment necessary for extending laser speckle techniques to analyze stresses in rotating blades are described. Details for setting up the equipment, for timing the events, for data recording, and for data analysis are discussed. Finite element techniques are investigated for analysis of speckle data. Advantages and limitations of the finite element analysis for the speckle data are discussed. The finite element program is listed

    Effects of horizontal vibration on hopper flows of granular materials

    Get PDF
    The current experiments investigate the discharge of glass spheres in a planar wedge-shaped hopper (45 degree sidewalls) that is vibrated hoizontally. When the hopper is discharged without vibration, the discharge occurs as a funnel flow, with the material exiting the central region of the hopper and stagnant material along the sides. With horizontal vibration, the discharge rate increases with the velocity of vibration as compared with the discharge rate without vibration. For a certain range of acceleration parameters (20-30 Hz and accelerations greater than about 1 g), the discharge of the material occurs in an inverted-funnel pattern, with the material along the sides exiting first, followed by the material in the core; the free surface shows a peak at the center of the hopper with the free surface particles avalanching from the center toward the sides. During the deceleration phase of a vibration cycle, particles all along the trailing or low-pressure wall separate from the surface and fall under gravity for a short period before reconnecting the hopper. For lower frequencies (5 and 10 Hz), the free surface remains horizontal and the material appears to discharge uniformly from the hopper

    Effects of Horizontal Vibration on Hopper Flows of Granular Material

    Get PDF
    This study experimentally examines the flow of glass spheres in a wedge-shaped hopper that is vibrated hoizontally. When the hopper is discharged without vibration, discharge occurs as a funnel flow, with the material exiting the central region of the hopper and stagnant material along the sides. With vibration, the discharge of the material occurs in reverse, with the material along the sides exiting first, followed by the material in the central region. These patterns are observed with flow visualization and high-speed photography. The study also includes measurements of the discharge rate, which increases with the amplitude of the velocity of vibration

    Temperature Dependence Of Brillouin Light Scattering Spectra Of Acoustic Phonons In Silicon

    Get PDF
    Electrons, optical phonons, and acoustic phonons are often driven out of local equilibrium in electronic devices or during laser-material interaction processes. The need for a better understanding of such non-equilibrium transport processes has motivated the development of Raman spectroscopy as a local temperature sensor of optical phonons and intermediate frequency acoustic phonons, whereas Brillouin light scattering (BLS) has recently been explored as a temperature sensor of low-frequency acoustic phonons. Here, we report the measured BLS spectra of silicon at different temperatures. The origins of the observed temperature dependence of the BLS peak position, linewidth, and intensity are examined in order to evaluate their potential use as temperature sensors for acoustic phonons. (C) 2015 AIP Publishing LLC.National Science Foundation (NSF) Thermal Transport Processes Program CBET-1336968PhysicsCenter for Complex Quantum SystemsMaterials Science and EngineeringTexas Materials InstituteMechanical Engineerin

    Collaborative Understanding of Cyanobacteria in Lake Ecosystems

    Get PDF
    We describe a collaboration between mathematicians and ecologists studying the cyanobacterium Gloeotrichia echinulata and its possible role in eutrophication of New England lakes. The mathematics includes compartmental modeling, differential equations, difference equations, and testing models against high-frequency data. The ecology includes observation, field sampling, and parameter estimation based on observed data and the related literature. Mathematically and ecologically, a collaboration like this progresses in ways it never would have if either group worked alone

    Spatial and Temporal Variability in Recruitment of the Cyanobacterium Gloeotrichia echinulata in an Oligotrophic Lake

    Get PDF
    Recruitment from dormant stages in the benthos can provide a critically important inoculum for surface populations of phytoplankton, including bloom-forming cyanobacteria. For example, water-column populations of the large (1–3-mm diameter) colonial cyanobacterium Gloeotrichia echinulata (Smith) P. Richter can be strongly subsidized by benthic recruitment. Therefore, understanding controls on recruitment is essential to an investigation of the factors controlling Gloeotrichiablooms, which are increasing in low-nutrient lakes across northeastern North America. We quantified surface abundances and recruitment from littoral sediments at multiple near-shore sampling sites in oligotrophic Lake Sunapee, New Hampshire, USA, during the summers of 2005–2012 and used this data set—the longest known record of cyanobacterial recruitment—to investigate potential drivers of interannual differences in Gloeotrichia recruitment. We found extensive spatiotemporal variability in recruitment. Recruitment was higher at some sites than others, and within seasons, recruitment into replicate traps at the same site was generally more similar than recruitment at different sites. These data suggest that local factors, such as substrate quality or the size of the seed bank, may be important controls on recruitment. Benthic recruitment probably accounted forGloeotrichia recruitment may be related to regional climatic variability

    Cyanobacteria as biological drivers of Lake Nitrogen and Phosphorus Cycling

    Get PDF
    Here we draw attention to the potential for pelagic bloom‐forming cyanobacteria to have substantial effects on nutrient cycling and ecosystem resilience across a wide range of lakes. Specifically, we hypothesize that cyanobacterial blooms can influence lake nutrient cycling, resilience, and regime shifts by tapping into pools of nitrogen (N) and phosphorus (P) not usually accessible to phytoplankton. The ability of many cyanobacterial taxa to fix dissolved N2 gas is a well‐known potential source of N, but some taxa can also access pools of P in sediments and bottom waters. Both of these nutrients can be released to the water column via leakage or mortality, thereby increasing nutrient availability for other phytoplankton and microbes. Moreover, cyanobacterial blooms are not restricted to high nutrient (eutrophic) lakes: blooms also occur in lakes with low nutrient concentrations, suggesting that changes in nutrient cycling and ecosystem resilience mediated by cyanobacteria could affect lakes across a gradient of nutrient concentrations. We used a simple model of coupled N and P cycles to explore the effects of cyanobacteria on nutrient dynamics and resilience. Consistent with our hypothesis, parameters reflecting cyanobacterial modification of N and P cycling alter the number, location, and/or stability of model equilibria. In particular, the model demonstrates that blooms of cyanobacteria in low‐nutrient conditions can facilitate a shift to the high‐nutrient state by reducing the resilience of the low‐nutrient state. This suggests that cyanobacterial blooms warrant attention as potential drivers of the transition from a low‐nutrient, clear‐water regime to a high‐nutrient, turbid‐water regime, a prediction of particular concern given that such blooms are reported to be increasing in many regions of the world due in part to global climate change

    Predicting the effects of climate change on freshwater cyanobacterial blooms requires consideration of the complete cyanobacterial life cycle

    Get PDF
    To date, most research on cyanobacterial blooms in freshwater lakes has focused on the pelagic life stage. However, examining the complete cyanobacterial life cycle—including benthic life stages—may be needed to accurately predict future bloom dynamics. The current expectation, derived from the pelagic life stage, is that blooms will continue to increase due to the warmer temperatures and stronger stratification associated with climate change. However, stratification and mixing have contrasting effects on different life stages: while pelagic cyanobacteria benefit from strong stratification and are adversely affected by mixing, benthic stages can benefit from increased mixing. The net effects of these potentially counteracting processes are not yet known, since most aquatic ecosystem models do not incorporate benthic stages and few empirical studies have tracked the complete life cycle over multiple years. Moreover, for many regions, climate models project both stronger stratification and increased storm-induced mixing in the coming decades; the net effects of those physical processes, even on the pelagic life stage, are not yet understood. We therefore recommend an integrated research agenda to study the dual effects of stratification and mixing on the complete cyanobacterial life cycle—both benthic and pelagic stages—using models, field observations and experiments
    corecore