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Electrons, optical phonons, and acoustic phonons are often driven out of local equilibrium in

electronic devices or during laser-material interaction processes. The need for a better understanding

of such non-equilibrium transport processes has motivated the development of Raman spectroscopy as

a local temperature sensor of optical phonons and intermediate frequency acoustic phonons, whereas

Brillouin light scattering (BLS) has recently been explored as a temperature sensor of low-frequency

acoustic phonons. Here, we report the measured BLS spectra of silicon at different temperatures. The

origins of the observed temperature dependence of the BLS peak position, linewidth, and intensity are

examined in order to evaluate their potential use as temperature sensors for acoustic phonons. VC 2015
AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4907616]

Thermal management represents an outstanding challenge

in many areas of technology. In microelectronics based on sili-

con, local hot spots have become a significant barrier for fur-

ther miniaturization of devices according to the Moore’s law.

In high-field electronic devices, as well as laser-material inter-

action processes, hot electrons are often coupled more strongly

to optical phonons than to acoustic phonons, the dominant heat

carriers in silicon and other semiconductors.1–3 In addition, the

relatively slow decay process of optical phonons to acoustic

phonons leads to a phonon bottleneck in the energy dissipation

processes according to a number of theoretical studies.4–7

However, there have been few direct experimental observa-

tions of such highly non-equilibrium transport processes.8,9

Direct measurements are needed for better understanding the

coupling and non-equilibrium transport processes of different

energy carriers in semiconductors and for designing next-

generation electronic devices to overcome the thermal man-

agement challenge.

This need has driven the active development of both

scanning probe microscopy and optical microscopy techni-

ques for probing the local temperatures of different energy

carriers in operating electronic devices.8–16 Compared to

thermal reflectance and scanning probe based thermometry

methods, inelastic light scattering based techniques can

potentially achieve high spectral resolution for specific pho-

non modes.17,18 Raman scattering is a widely used inelastic

scattering method, employed to probe phonon transport in

various materials.8–16,19,20 One limitation, however, is that

Raman scattering mainly probes high-frequency optical

phonon modes. Consequently, the peak intensity can be used

to probe only the population and equivalent temperature

of such optical phonons. In addition, the population or tem-

perature of intermediate frequency phonons can play an

important role in the observed temperature dependence of

the peak position and linewidth of the Raman-active optical

phonons.21–24 Existing Raman thermometry techniques are

not capable of spectrally resolving the equivalent tempera-

ture of low-frequency acoustic phonons. Recent time domain

and frequency domain thermal reflectance measurements

have indirectly revealed the presence of ballistic low-

frequency phonons for thermal length scales smaller than the

phonon mean free path.25–27 These ballistic, long mean free

path phonons are likely not at local equilibrium with inter-

mediate and high frequency phonons in nanostructures and

microelectronic devices.28–30 However, measurements have

not been able to directly probe the local non-equilibrium

temperatures of different phonon modes. Therefore, there is

currently a lack of methods for measuring the low-frequency

acoustic phonon temperature.

Brillouin light scattering is an inelastic light scattering

technique whose principle is identical to Raman scattering

but is used much less frequently due to technical challenges.

One major difference is the use of a specialized tandem-

multipass interferometer based on scanning Fabry-Perot cav-

ities to resolve scattered light with small frequency shifts

(<200 GHz).31 While acoustic phonons have been probed

using stimulated Brillouin spectroscopy and picosecond ul-

trasonic techniques, such techniques are based on the optical

excitation of a large population of acoustic phonons, which

is undesirable in thermometry measurements.32,33 Recently,

Brillouin light scattering (BLS) techniques have been used

as a local temperature sensor for magnons in metallic and

insulating ferromagnetic materials and for low-frequency

phonons in glass.34,35 However, the application of this ther-

mometry method for acoustic phonons in semiconductors

remains to be investigated.

In this paper, we report an investigation of the temperature

dependence of the BLS spectra of silicon, the most common

electronic material. For comparison, Raman measurements are
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taken simultaneously with the BLS measurements. Both

BLS and Raman spectra of uniformly heated silicon exhibit

systematic changes in frequency shift, linewidth, and the

integrated intensity. In particular, the apparent BLS spectra

exhibit an upward frequency shift with increasing tempera-

ture, opposite to that of the Raman spectra. This observation

is explained by considering the sensitive dependence of the

BLS frequency on wave vector, and thus, the refractive index

of the material. Better understanding of the origins of the

observed temperature dependence of the BLS spectra may

allow the establishment of BLS as a thermometry technique

for low-frequency acoustic phonons in semiconductors.

Our experimental setup is shown in Fig. 1(a). A (110) Si

sample was mounted on a ceramic heater. A single frequency

532 nm, p-polarized laser, incident at 45� from the surface

normal (angle not depicted in Fig. 1(a)), was used to probe the

phonon modes. The [001] axis of the Si was aligned along the

p direction. The scattered light was collected in backscattering

geometry, where a beam splitter directed approximately 4%

of the scattered light to a spectrometer and a Si charge

coupled detector (CCD) for Raman measurements. The rest of

the collected scattered light was directed to a Tandem Multi-

pass Fabry-Perot interferometer for BLS measurements. A

representative BLS spectrum, shown in Fig. 1(b), shows two

peaks, corresponding to the longitudinal acoustic (LA) phonon

along the [110] direction and the transverse acoustic (TA)

phonon modes along the [001] direction. The phonon fre-

quency measured in the BLS spectra is given by

2pf ¼ 2nvk0; (1)

where n is the index of refraction of silicon, v is the group

velocity of the phonon mode, and k0 is the wave vector of

the incident light.36 The phonon modes we observed agree

with the frequencies predicted using an incident wave vector

of 1.18� 107 m�1 and group velocities of 5.834� 103 m/s

and 9.167� 103 m/s, for the TA and LA phonons, respec-

tively.37 In our temperature analysis of the BLS spectra, we

choose to focus on the LA phonon mode over the TA mode

because of its relatively high signal to noise ratio. In the

Raman spectra, shown in Fig. 1(c), we observed one phonon

peak corresponding to the degenerate optical modes near the

Brillouin zone center.38

Next, the sample was uniformly heated, in 30 K incre-

ments, from 298 K to 568 K, and probed with an incident

laser power of 150 mW. The temperature was measured by a

thermocouple attached to the heater close to the sample. At

each temperature, the sample was allowed to equilibrate for

10 min before BLS and Raman spectra were measured for a

total of 45 min and 38 min, respectively. We fit the phonon

peaks with Lorentzian lineshapes at each temperature, shown

in Fig. 2. There is a clear downward shift in frequency for

the Raman spectra as temperature increases. This frequency

shift is due to bond softening and the increased scattering

with intermediate frequency phonons at higher temperatures

as suggested in previous studies.22,23,39 The BLS spectra,

shown in Fig. 2, have an apparent upward shift in frequency

as temperature increases, opposite to the downward shift pre-

dicted by the decreasing phonon group velocity.37 The pho-

non frequency shifts are explicitly plotted as a function of

temperature by extracting the centers from the Lorentzian

fits. The temperature dependent BLS and Raman frequency

both fit to linear functions quite well in the temperature

range examined, as shown in Fig. 3(a). We note that the

probing laser may cause local heating. However, since the

probing laser power remains the same for the temperature

calibration process and for local temperature sensing, the

FIG. 1. (a) Schematic diagram of experimental set-up. Key components

include a 532 nm laser, mirrors (M), a polarizer (P), several lenses (L1,L2,L3),

a beam splitter (BS), a 532 nm notch filter (NF), a spectrometer for Raman

measurements, and a tandem Fabry-Perot interferometer for BLS measure-

ments. (b) A representative BLS spectrum of Si measured for 120 min, with

incident laser power 150 mW at room temperature. LA and TA represent the

longitudinal and transverse acoustic phonon modes, respectively. (c) An exam-

ple Raman spectrum, measured for 38 min at 150 mW incident laser power at

room temperature.

FIG. 2. (a) BLS and (b) Raman spectra are plotted for each temperature

(black circles) along with the Lorentzian fits (red lines). The top most

curves on each plot correspond to the measurements made at 298 K, with

the temperature increasing in increments of 30 K as the curves move

toward the bottom of the charts, ending with the plot corresponding to the

measurement at 568 K.
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effect does not compromise the accuracy of our method for

measuring temperature rise caused by other heating sources.

The apparent opposite temperature dependence shown

by the acoustic phonon frequency can be understood by tak-

ing into account the temperature dependence of the refractive

index of Si, which influences the probed phonon frequency

according to Eq. (1). By conducting ellipsometry measure-

ments as a function of temperature, we directly extracted the

temperature-dependent refractive index. A downward fre-

quency shift in the BLS frequency is obtained, shown in

Fig. 3(b), after removing the effect of temperature dependent

refractive index, shown in Fig. 3(c). Such a downward shift

in the acoustic phonon frequency is related to the decreased

group velocity, caused by bond softening.

The BLS linewidth is also found to increase with

increasing temperature, as shown in Fig. 4(a). First principle

methods have been used to calculate anharmonic linewidths

in graphene, silicon, and germanium.24,40–43 It has been sug-

gested that the decay of one phonon into two lower fre-

quency phonons, and the combination of two phonons into a

higher frequency phonon scattering processes both contrib-

ute to the anharmonic linewidth for the LA phonon modes of

silicon.24 Further studies are required to investigate whether

the temperature dependence of the anharmonic phonon line-

width or another mechanism has led to the observed temper-

ature dependence of the BLS linewidth.

We further investigate the integrated intensity of the

BLS peaks as a possible method for measuring the popula-

tion or equivalent temperature of the low-frequency acoustic

phonons that yield the BLS peaks. The intensity of the BLS

signal is given by

I ¼ e4�hVxs
4xp

2e0
4 4pð Þ2c4.t2

jês � P
$
� êi j2

nþ 1

n

� �
I0; (2)

where e is the permittivity of silicon, e0 is the permittivity of

free space, �h is the reduced Planck constant, V is the scatter-

ing volume, xs is the scattered frequency, xp is the frequency

of the phonon, c is the speed of light in vacuum, . is the den-

sity, t is the group velocity of the phonon, ês (êi) is the polar-

ization of the scattered (incident) light, P
$

is the photoelastic

tensor contracted with the unit vectors of the phonon propaga-

tion and phonon polarization, n is the phonon occupation

given by the Bose-Einstein distribution, nþ 1 or n corre-

sponds to Stokes or anti-Stokes scattering, and I0 is the inci-

dent intensity.44 The most significant factor in the temperature

dependence of the BLS intensity is the phonon occupation,

which increases by approximately 100% over the temperature

range between 298 and 568 K. The other temperature depend-

ent quantities can be evaluated via their relation to the permit-

tivity. The photoelastic tensor is approximately proportional to

the inverse of the permittivity, leading the BLS intensity to be

proportional to the square of the permittivity.44–46 The scatter-

ing volume is determined by the laser spot size, which is inde-

pendent of temperature, and the penetration depth of the light,

which is proportional to the inverse of the imaginary part of

the index of refraction through the Beer-Lambert law.47 The

complex refractive index (or equivalently the permittivity) as

a function of temperature was measured using ellipsometry.

The permittivity was found to increase by approximately 12%

over the temperature range, and the imaginary part of the

index of refraction showed no clear trend within the 20%

uncertainty of the measurements. The changes in the other fac-

tors in the BLS intensity are about 3% or less and therefore

negligible. In Fig. 4(b), the BLS integrated intensity, domi-

nated by the phonon population change, is shown to linearly

increase with temperature. A linear change is expected for

low frequency phonons based on the Bose-Einstein distribu-

tion, n ¼ ðexp½�hxp=kBT� � 1Þ�1 ffi kBT= �hxp, where kB is

Boltzmann’s constant, and T is the temperature of the acoustic

phonon. As the sample temperature is raised uniformly by the

external heater, we assume that the acoustic phonons are ther-

malized, and their temperature is equivalent to the temperature

of the heater. The integrated intensity of the anti-Stokes peak

shows a similar linear dependence on temperature (data not

shown). In principle, one can establish a one-to-one correspon-

dence between the modified integrated BLS intensity and

the population or temperature of the BLS-active acoustic

FIG. 3. (a) Directly measured acoustic and optical phonon frequency shift as

a function of temperature extracted from the BLS (circles, left axis) and

Raman (squares, right axis) spectra. (b) Corrected acoustic phonon frequency

decreases with temperature. (c) Ellipsometry measurements show that the re-

fractive index increases with temperature.

FIG. 4. (a) Linewidths of the acoustic phonon measured from the full width

half maxima of the Lorentzian fits to the BLS spectra. (b) The integrated in-

tensity (I.I.) for the BLS Stokes peak increases approximately linearly with

temperature. The refractive index effect has not been removed.
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phonon mode once the effects of other temperature dependent

quantities are accounted for via independent ellipsometry

measurements.

The intensity ratio between the Stoke and anti-Stoke

peaks in BLS does not vary with temperature, in contrast to

Raman spectra. This difference arises from the phonon occu-

pancy number for acoustic and optical phonons. Based on the

Bose-Einstein distribution n ¼ ðexp½�hxp=kBT� � 1Þ�1
, the

occupancy number n for the acoustic phonons at 150 GHz is

about 41 at room temperature. As a result, the (nþ 1)/n ratio

or the BLS Stokes-to-anti-Stokes ratio is close to 1 and insen-

sitive to temperature. In comparison, the occupancy number is

as small as 0.1 for 15 THz optical phonons at room tempera-

ture, so that the Raman Stokes-to-anti-Stokes ratio sensitively

depends on temperature.

We highlight a number of differences in the temperature

dependences of the BLS and Raman spectra. First, the cou-

pling strength of light to optical phonon modes is signifi-

cantly higher than that to the acoustic phonon modes,

because of the larger polarization associated with optical

phonons out-of-phase atomic motion within a unit cell.48 In

addition, multiple passes through the scanning Fabry-Perot

cavities used by BLS reduce transmission, leading to a loss

of signal. Thus, the BLS measurement is significantly more

time-consuming because of the low intensity of the scattered

photons reaching the detector. In order to collect sufficient

scattered photons in a reasonable amount of time, a large op-

tical power is required, which may cause local heating and a

constant temperature shift in the probed region. Second, BLS

is more sensitive to refractive index changes because the

acoustic phonons follow a positive, linear dispersion curve

and the optical phonons follow a relatively flat dispersion

curve in the low wave vector range probed by light scattering

techniques.38 The increase in the refractive index changes

the wave vector in silicon, causing an increase in the meas-

ured frequency of the acoustic phonons and little change in

the measured optical phonon frequency. Third, because of

the low frequency range probed by the BLS measurements,

one cannot rely on the anti-Stokes and Stokes ratio as a

method for temperature calibration.

We now discuss the accuracy of BLS based temperature

sensors. If one relies on the integrated intensity as the tem-

perature sensor, fluctuations in the signal intensity are the

limiting factor. The main source of random noise is the slight

misalignment of the scanning cavities in the BLS interferom-

eter and is reduced by taking longer integration time in the

measurements. For the measurements reported in Fig. 4(b),

the average uncertainty in the BLS intensity temperature sen-

sor is approximately 30 K. If one relies on the frequency shift

or the linewidth as an empirical temperature sensor instead,

the minimal measurable temperature changes are dependent

on the frequency resolution of the instrument as well as the

signal to noise ratio of the spectra. For the purpose of tem-

perature sensing, the correction in the wave vector is not nec-

essary. Based on the data presented in Fig. 3(a), the

uncertainty in frequency-shift based temperature sensing is

about 10 K, which is more accurate than the integrated BLS

intensity-based temperature sensor. Finally, the BLS line-

width provides a temperature sensitivity of about 20 K based

on Fig. 4(a).

It is important to clarify the nature of the temperatures

measured by the different BLS parameters. The temperature

measured by the empirical frequency shift is not simply

determined by the occupation number of the specific BLS

probed mode. The measured temperature is affected by a

range of phonons, coupled to the probed mode via the anhar-

monic terms in the interatomic potential, affecting the fre-

quency of the probed phonon mode through the refractive

index and the group velocity.37,49 Similarly, anharmonic

phonon interactions and possibly other factors determine the

linewidth of the probed phonon mode. Consequently, the fre-

quency and linewidth can be used as empirical temperature

sensors, but this measured temperature represents the aver-

age temperature of a range of different phonon modes.

However, the integrated BLS intensity is proportional to the

phonon occupation number for a specific mode, allowing the

integrated BLS intensity to be used as a phonon-mode spe-

cific temperature sensor. As the relative uncertainty is lower

in both the frequency shift and linewidth, these parameters

can be used to measure phonon temperature in systems with

local equilibrium. However, if one is interested in the tem-

perature of a particular phonon mode in a highly non-

equilibrium system in which different phonon modes may

have different temperatures, one needs to use to the inte-

grated BLS intensity with the compromise of increased

uncertainty.

In summary, we report the temperature dependence in

the peak position, linewidth, and intensity of the BLS spectra

in Si and discuss qualitatively the origins of these changes.

We suggest that these temperature dependent quantities can

be used as local temperature sensors although only the inte-

grated intensity is proportional to the occupancy of the spe-

cific phonon mode probed. The temperature sensitivity can

improve with longer measurement times. In conjunction with

the established application of Raman scattering technique as

a probe for optical phonons, BLS, sensitive to low frequency

acoustic phonon modes, may enable investigations of non-

equilibrium transport and coupling of different phonon

modes in silicon and other novel nanoelectronic devices.

This work was supported by National Science Foundation

(NSF) Thermal Transport Processes Program under Grant No.
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