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Predicting the effects of climate change
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To date, most research on cyanobacterial blooms in freshwater lakes has focused on the pelagic life stage. However,
examining the complete cyanobacterial life cycle—including benthic life stages—may be needed to accurately predict
future bloom dynamics. The current expectation, derived from the pelagic life stage, is that blooms will continue
to increase due to the warmer temperatures and stronger stratification associated with climate change. However,
stratification and mixing have contrasting effects on different life stages: while pelagic cyanobacteria benefit from
strong stratification and are adversely affected by mixing, benthic stages can benefit from increased mixing. The net
effects of these potentially counteracting processes are not yet known, since most aquatic ecosystem models do not
incorporate benthic stages and few empirical studies have tracked the complete life cycle overmultiple years.Moreover,
for many regions, climatemodels project both stronger stratification and increased storm-inducedmixing in the coming
decades; the net effects of those physical processes, even on the pelagic life stage, are not yet understood. We therefore
recommend an integrated research agenda to study the dual effects of stratification and mixing on the complete
cyanobacterial life cycle—both benthic and pelagic stages—using models, field observations and experiments.
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INTRODUCTION

Surface aggregations of cyanobacteria (blooms) are
increasing in many freshwater systems worldwide,
threatening ecosystem services fundamental to society
(Paerl & Huisman, 2008; Taranu et al., 2015; Ho et al.,
2019). To date, most studies of freshwater cyanobacteria
have focused on this conspicuous stage of their life
history. However, the pelagic focus overlooks the fact
that in temperate and boreal lakes, cyanobacteria are
generally not present in the water column year-round
(Fig. 1). Instead, a large part of the life cycle is spent
in the benthos, on or near the sediment (Fryxell, 1983;
Reynolds, 2006; Poulickova et al., 2008; Kaplan-Levy
et al., 2010). Subsequent recruitment from the benthos
to the open water pelagic zone inoculates blooms
(Reynolds, 1972; Hansson et al., 1994; Perakis et al.,
1996; Brunberg & Blomqvist, 2003; Padisak, 2003;
Stahl-Delbanco et al., 2003; Kravchuk et al., 2006; Torres
&Adámek, 2013). Similar benthic-pelagic coupling is also
implicated in marine and estuarine harmful algal blooms,
including red tides (e.g. Boero et al., 1996; Steidinger,
2010).
Although previous papers have suggested that knowl-

edge of cyanobacterial life cycles is required for effective
bloom prediction and management (e.g. Hellweger et al.,
2008; Hense & Beckmann, 2010; Suikkanen et al.,
2010), we still do not have a good understanding of
the environmental conditions in which recruitment
from benthic life stages is critical to pelagic population
dynamics. When quantified, cyanobacterial recruitment
on average contributes <1 to 2% of the pelagic
population (reviewed by Tan, 2012)—yet can sometimes
account for up to 60%of the pelagic population (reviewed
by Carey et al., 2014). Further, eliminating recruitment
could result in 50% smaller blooms (Verspagen et al.,
2005). A predictive understanding of when, where,
and why benthic life stages matter to bloom formation
could lead to novel management strategies to diminish
benthic survival or recruitment, as has been explored by
some researchers (e.g. Visser et al., 1996; Baker, 1999;
Tsujimura, 2004; Verspagen et al., 2006; Tan, 2012; Jia
et al., 2014; Chen et al., 2016a; Visser et al., 2016; Wu et al.,
2017).
In this Horizons article, we urge researchers to consider

the complete cyanobacterial life cycle to meet the pressing
challenges of predicting and managing cyanobacterial
blooms against a backdrop of ongoing global change.
First, we review what is known about cyanobacterial life
cycles, including how lake thermal stratification and its
converse, mixing, have contrasting impacts on benthic
versus pelagic life stages. We then explore how these
differential responses might alter the current expectation

Fig. 1. Schematic for a generalized cyanobacterial life cycle; details
vary among taxa.

that climate change will continue to increase cyanobac-
terial blooms (e.g. Paerl & Huisman, 2008) and con-
clude by proposing a research agenda to advance our
understanding of cyanobacterial life history and when
it matters to bloom prediction and forecasting. Although
our focus is primarily on temperate and boreal lakes that
exhibit summer thermal stratification, we also consider
waterbodies of other mixing regimes and climates in the
proposed research agenda.

QUICK PRIMER ON CYANOBACTERIAL
BENTHIC-PELAGIC COUPLING

Cyanobacterial life cycles are complex, with key eco-
logical constraints in each habitat impacting the transi-
tions between habitats (Fig. 1). Cyanobacterial population
growth within the water column is generally enhanced by
warm temperatures, high light and nutrient availability,
and thermal stability (e.g. Paerl, 1988; Huisman & Hulot,
2005; Reynolds, 2006; Jöhnk et al., 2008; Wagner &
Adrian, 2009).
When pelagic conditions for cyanobacteria deteriorate,

e.g. due to cooling water temperatures in the autumn in
temperate and boreal environments, many cyanobacte-
rial taxa actively exit the water column (Fig. 1). Their
transition to the benthos happens via one of two mech-
anisms. First, in true dormancy, cyanobacteria produce
specialized cells called akinetes while still in the water
column; the colonies (with akinetes) then senesce and
sink to the sediment, forming a “seed bank” (Nichols &
Adams, 1982; Gyllstrom & Hansson, 2004; Suikkanen
et al., 2010). Cyanobacterial genera with true dormancy
include Aphanizomenon, Cylindrospermopsis, Dolichospermum
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and Gloeotrichia (Adams & Duggan, 1999; Karlsson-Elf-
gren & Brunberg, 2004; Reynolds, 2006; Rücker et al.,
2009; Wood et al., 2009; Kaplan-Levy et al., 2010; Kovacs
et al., 2012). Akinetes are highly resistant to environ-
mental stressors, including desiccation, and can either
germinate immediately (e.g. Rother & Fay, 1977; Lynch &
Shapiro, 1981; Cmiech et al., 1984) or persist for months
to decades (Livingstone & Jaworski, 1980; Rasanen et al.,
2006; Wood et al., 2009), providing a “storage effect”
against adverse conditions (Warner & Chesson, 1985;
Caceres, 1997) and facilitating invasion into new lakes
(e.g. Padisak, 2003; Rücker et al., 2009; Ramm et al.,
2017).
Alternatively, instead of producing akinetes, taxa such

as Microcystis and Planktothrix lower their metabolic activ-
ity and sink to overwinter on or near the sediments as
(mostly) inactive vegetative cells (Fallon & Brock, 1981;
Reynolds et al., 1981; Tsujimura et al., 2000; Brunberg
& Blomqvist, 2002; Poulickova et al., 2004; Ihle et al.,
2005; Sabart et al., 2015; Wang et al., 2018). In some
environments, few of these inactive vegetative cells persist
through the winter due to mortality, burial and other loss
processes (e.g. Baker, 1999; Wang et al., 2018). In others,
cells can persist for years (although not decades) before
returning to the water column (Caceres & Reynolds,
1984; Bostrom et al., 1989; Brunberg, 1995; Brunberg &
Blomqvist, 2003).
Return of benthic life stages to the water column

occurs both passively and via buoyancy regulation with
gas vesicles (Fig. 1). Passive recruitment occurs when
physical processes or bioturbation resuspend benthic
akinetes or inactive vegetative colonies, which then
become active in the water column (Stahl-Delbanco &
Hansson, 2002; Verspagen et al., 2004; Yamamoto, 2010;
Gu, 2012; Karlson et al., 2012; Chen et al., 2016b). By
contrast, favorable environmental conditions in the ben-
thos can trigger akinete germination or the resumption of
metabolic activity by inactive benthic stages. The newly
active cyanobacteria then enter the water column after
photosynthetic rates are sufficient to promote gas vesicle
production, enabling buoyancy (Preston et al., 1980;
Trimbee & Harris, 1984b; Karlsson-Elfgren et al., 2003;
Carey et al., 2008). Importantly, the conditions triggering
the in situ transition from the inactive benthic stage to
the active stage are incompletely understood, in part
because most studies examine only a few environmental
drivers for limited time periods. Moreover, when the
same drivers have been studied using both observational
and experimental approaches, responses differ across
taxa and lakes (Tables S1 and S2). In addition, our
understanding of spatial and temporal heterogeneity in
recruitment patterns within and among lakes remains
limited.

DIFFERENT LIFE STAGES HAVE
CONTRASTING RESPONSES TO
STRATIFICATION AND MIXING

Regardless of these gaps in current understanding, work
to date strongly suggests that cyanobacterial benthic and
pelagic stages can respond very differently to the same
environmental drivers due to the inherent differences in
their habitat and life strategy. For well-studied taxa such as
Aphanizomenon,Dolichospermum andMicrocystis, cyanobacte-
rial sensitivity to lake stratification andmixing depends on
the life stage and whether the mixing is occurring in the
water column or at the sediment–water interface.
In the pelagic life stage, the general expectation is

that thermal stratification is “good” and mixing is “bad”
for cyanobacterial growth and reproduction, especially
in deep lakes (M1 in Fig. 2). Stratification gives buoyant
cyanobacteria a competitive advantage (Walsby, 1994),
as their ability to regulate their vertical position also
enables them to access nutrients elsewhere in the water
column (reviewed by Cottingham et al., 2015) and shade
out competitors (Carey et al., 2012). Conversely, mixing
events break up surface aggregations of cyanobacteria
(reviewed in Zhao et al., 2017; Xiao et al., 2018). Mixing
events strong enough to disrupt stratification can cause
premature loss of active cyanobacteria from the water
column because the greater pressures at depth cause gas
vesicles to collapse or they transport cells/colonies below
the compensation depth (e.g. Walsby, 1994; Visser et al.,
1996; Huisman et al., 2004). After gas vesicle collapse,
cells are no longer able to control their buoyancy and
sink to the benthos (Oliver & Walsby, 1984; Kinsman
et al., 1991). Even if cells do not immediately senesce, light
limitation and colder temperatures at depth usually result
in losses that exceed reproduction (Huisman & Hulot,
2005). These mechanisms explain why increased thermal
stability driven by climatic warming is implicated as a
leading cause of increasing cyanobacterial blooms (e.g.
Jöhnk et al., 2008; Wagner & Adrian, 2011; Carey et al.,
2012)—as well as why some lake managers deploy epilim-
netic mixing systems to control cyanobacteria (reviewed
by Visser et al., 2016; Xiao et al., 2018; Lofton et al., 2019).
However, mixing can have positive impacts on benthic

cyanobacterial life stages (M2 in Fig. 2). For example,
mixing at the sediment–water interface triggers the
return of benthic cyanobacteria to the water column
either passively via physical resuspension by sediment
mixing (Reynolds et al., 1981; Thomas & Walsby, 1986;
MacIntyre & Melack, 1995; Verspagen et al., 2004;
Misson et al., 2011; Sejnohova & Marsalek, 2012) or
ebullition (Delwiche et al., 2020), or by stimulating
germination and active recruitment (Stahl-Delbanco
et al., 2003; Karlsson-Elfgren et al., 2004; Rengefors
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Fig. 2. Graphical depiction of the core hypothesized mechanisms:
mixing events that disrupt stratification have an adverse effect on
pelagic cyanobacteria (M1), while mixing in shallow water stimulates
recruitment from benthic life stages back into the water column (M2).
Both mechanisms are at work in deep lakes, whereas only M2 would
operate in shallow lakes. The net effect of these opposing processes on
pelagic population size is not yet known, but is expected to differ among
cyanobacterial taxa as a function of lake type, location, and time of year,
as explained in the text. The dotted line represents the thermocline.

et al., 2004; Misson & Latour, 2012). We reviewed the
literature on the environmental factors determining
reactivation, germination and recruitment (Tables S1
and S2) and found reports demonstrating positive effects
of mixing on recruitment for multiple genera, including
Aphanizomenon (Trimbee & Harris, 1984a; Hansson et al.,
1994), Dolichospermum (Reynolds, 1972; Rengefors et al.,
2004; Bertos-Fortis et al., 2016), Microcystis (Reynolds
et al., 1981; Stahl-Delbanco et al., 2003; Verspagen et al.,
2004; Ihle et al., 2005; Verspagen et al., 2005; Misson
et al., 2011; Misson & Latour, 2012; Su et al., 2016),
Nodularia (Bertos-Fortis et al., 2016) and Gloeotrichia (Forsell
& Pettersson, 1995; Karlsson-Elfgren et al., 2003, 2004,
2005; Rengefors et al., 2004; Carey et al., 2014). Moreover,
macrophyte presence, which decreases mixing in shallow
waters (e.g. Gebrehiwot et al., 2017), is associated with
lower phytoplankton recruitment (reviewed by Villena &
Romo, 2007). If mixing indeed facilitates the transition
from benthic to pelagic habitats—thereby stimulating
blooms—it may explain the equivocal success of bloom
management via epilimnetic mixing systems (Visser et al.,
2016; Lofton et al., 2019).
Based onM1 andM2 (Fig. 2), we predict that cyanobac-

terial taxa that depend strongly on both recruitment and
gas vesicles for bloom formation will be positively affected
bymixing at the sediment–water interface in both shallow
and deep lakes, but negatively affected (at least in the
short-term) by the disruption of summer stratification by
water column mixing. However, the net consequences of
mixing events for cyanobacterial populations are difficult
to predict, especially given different dormancy strategies,
physiological traits that affect success in the water column,

lake morphometry, stochasticity in the timing of mixing
events relative to plankton phenology, and other factors.
As such, a careful consideration of all of these effects,
and the time scales over which they manifest (e.g. Wilson
et al., 2016), is needed to make accurate predictions of
how cyanobacteria may change in the future.

INTERSECTIONS OF
CYANOBACTERIAL LIFE HISTORY AND
CLIMATE CHANGE

The effects of climate change on stratification andmixing
(e.g.MacKay et al., 2009;Woolway et al., 2019) are already
having, and will continue to have, profound influences
on aquatic biota in temperate and boreal lakes, including
cyanobacteria (Stockwell et al., 2020). The timing, dura-
tion and strength of thermal stratification are changing
in lakes and reservoirs globally due to increasing air tem-
peratures (Lehman, 2002; O’Reilly et al., 2003; O’Reilly
et al., 2015; Woolway & Merchant, 2019). For pelagic
cyanobacterial populations that are “seeded” by mixing
events that stimulate recruitment, changes to the temporal
dynamics of stratification could have important conse-
quences for summer blooms, especially in deep lakes.
However, this possibility has not yet been fully explored.
Moreover, the predicted changes in stratification

are not unidirectional, as many global climate change
scenarios also predict increased high-intensity storms
in both mid-latitude and tropical regions (Christensen,
2007; Hayhoe et al., 2007; Field et al., 2012; Havens
et al., 2016; Prein et al., 2017). To date, however, the
potential consequences of increased storms have not
been investigated as extensively as changes in water
temperature and stratification (but see Stockwell et al.,
2020). In deep stratified lakes, more storms will increase
episodic water column mixing (see e.g. Jennings et al.,
2012; Klug et al., 2012; De Eyto et al., 2016; Woolway
et al., 2018) during otherwise thermally-stable summers.
While this mixing may disrupt pelagic cyanobacterial
populations in the short term via M1 in Fig. 2, it may
also increase recruitment via M2 or stimulate pelagic
cyanobacteria over days to weeks due to increased nutri-
ents from runoff, resuspended sediments or entrained
hypolimnetic water. By contrast, in polymictic lakes,
the positive effects of storms on recruitment or nutrient
availability (e.g. Zhu et al., 2014; Havens et al., 2016) could
be offset by increased hydraulic flushing rates that remove
pelagic cyanobacteria, particularly in systems with short
residence times (Havens et al., 2016; Richardson et al.,
2018, 2019).
Thus, the interplay between two key physical aspects

of climate change—stronger thermal stratification and
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increased intense storms—is likely to have both negative
and positive effects on cyanobacteria, with effects that
differ for benthic and pelagic life stages (e.g. Hense
& Beckmann, 2006; Jager & Diehl, 2014) and among
lakes. Notably, although the impacts of different aspects
of climate change are beginning to be addressed for
pelagic cyanobacteria in temperate systems (e.g. Taranu
et al., 2012; Rigosi et al., 2014; Richardson et al., 2018,
2019), none of these studies has considered benthic life
stages or recruitment. To develop robust predictions of
how cyanobacteria respond to the physical effects of
climate change, we need to better understand how these
drivers interact with cyanobacterial traits (sensu Litchman
& Klausmeier, 2008; Kruk et al., 2010). For example,
differences in dormancy strategies (i.e. akinetes vs.
inactive vegetative cells, as described above), accessory
photosynthetic pigments (e.g. Glibert, 2016), buoyancy
(e.g. floating velocity, Xiao et al., 2018) and sensitivity
to increased temperature (e.g. Lurling et al., 2013)
may modulate responses to different aspects of climate
change. Further, lake-specific characteristics such as
morphometry, watershed characteristics and water
chemistry may amplify or diminish climate change
impacts (e.g. Richardson et al., 2018). For example, cooler
overnight air temperatures increase convective mixing
in the littoral zone, potentially stimulating both nutrient
cycling and passive recruitment (MacIntyre & Melack,
1995), but the impact of this mechanism likely varies
with the proportion of a lake comprising littoral habitat
and degree of seasonal change in air temperature.

RESEARCH AGENDA

A comprehensive research agenda is required to advance
our understanding of how stratification and mixing
impact the complete cyanobacterial life cycle. Some of
this work is already underway, yet we need concerted
efforts to integrate across taxa, lakes and geographic
regions to identify emergent trends that may not be
evident within any one system (Burford et al., 2020).
Specific research needs include:

Simulation models. Simulation models that capture the
dynamic impacts of physical and chemical processes
on both benthic and pelagic life stages are needed to
answer two key questions: (1) What are the net effects of
stratification and mixing on cyanobacterial populations,
especially bloom formation? and (2) Under a suite
of realistic climate and management scenarios, will
cyanobacterial blooms increase or decrease? Understand-
ing how diverse taxa and lakes might be impacted by
different scenarios can only be achieved through extensive
studies using models with different levels of complexity

to see whether findings are consistent across modeling
approaches and lakes (Sommer et al., 2012; Hipsey
et al., 2015). Some individual-based cyanobacterial
population models have included benthic stages (e.g.
Hense & Beckmann, 2006; Hellweger et al., 2008) and
the effects of mixing on pelagic phytoplankton have been
explored previously (e.g. Huisman et al., 2004; Jöhnk
et al., 2008; Blottière et al., 2014; Zhao et al., 2017).
However, to our knowledge, no lake ecosystem simulation
model incorporates recruitment from benthic life stages
as a contributor to pelagic populations. Addition of
recruitment to simulation models such as PROTECH
(Elliott et al., 1999; Gray et al., 2019) and the General Lake
Model coupled with the Aquatic EcoDynamics modules
(GLM-AED2, Hipsey et al., 2019) would allow for wide-
scale exploration of potential scenarios of the strength of
stratification; the type, frequency, intensity and duration
of mixing; interactions with other environmental drivers;
and lake management. The mixing scenarios should be
informed by both climate change predictions, specifically
those related to temperature, wind and the frequency
and intensity of storm events, as well as managers’ needs
with respect to anticipated water uses. All models should
be parameterized from observations and experiments
conducted across a wide range of lakes, as described
below, and specifically include core environmental drivers
likely to determine growth and survival during each life
stage (e.g. light, temperature and mixing; Tables S1 and
S2).

Field observations. Field observations of how mixing
events of varying magnitude and duration impact both
the pelagic and the benthic life stage of important bloom-
forming taxa in a broad array of lakes are necessary to
parameterize the models for different taxa and lakes.
In particular, observational data on recruitment for
more taxa over multiple years, especially in tropical
lakes and polymictic lakes, are urgently needed to better
understand the effects of mixing on cyanobacterial life
histories. Simultaneous collection of data on interacting
environmental drivers—including temperature, light,
mixing, nutrients and dissolved oxygen—allows for
correlative identification of potential drivers of pelagic
population dynamics (e.g. Zhu et al., 2014; Yang et al.,
2016) and recruitment (e.g. Carey et al., 2014). To date,
however, most cyanobacterial recruitment studies have
been conducted over just one or two summer stratified
seasons in temperate regions (Carey et al., 2014); studies
that run year-round or across many years, and in boreal or
tropical regions, remain rare. In particular, cyanobacteria
in tropical regions pose major management concerns,
yet much less is known about the drivers of tropical
blooms (reviewed by Mowe et al., 2015). Consequently, it
remains unknown how mixing events may affect tropical

5

D
ow

nloaded from
 https://academ

ic.oup.com
/plankt/advance-article/doi/10.1093/plankt/fbaa059/6043305 by guest on 06 January 2021

https://academic.oup.com/plankt/article-lookup/doi/10.1093/plankt/fbaa059#supplementary-data
https://academic.oup.com/plankt/article-lookup/doi/10.1093/plankt/fbaa059#supplementary-data


JOURNAL OF PLANKTON RESEARCH VOLUME 00 NUMBER 00 PAGES 1–10 2020

cyanobacterial life histories. Newer technologies such as
FlowCAMs coupled with taxonomic identification via
machine learning may expedite the tedious work of
identification via microscopy (e.g. Thomas et al., 2018;
Hrycik et al., 2019), though to our knowledge such
approaches have not yet been used in recruitment studies.

Experiments. Because of the difficulty of identifying
causal drivers from observational data, laboratory or
field mesocosm experiments that manipulate the intensity
and duration of mixing can be used to isolate the effects
of mixing on both benthic and pelagic life stages (see,
for example, the studies of mixing in Table S2). As
with the other research approaches, experiments will
need to be conducted for multiple taxa, in lakes with
different morphometries and seasonal regimes. Field
mesocosm experiments have the benefit of generally
providing more realistic conditions than smaller scale
lab culture experiments (e.g. Wang et al., 2018, but see
Park et al., 2018), though field studies can be logistically
challenging and lose realism after longer durations of
time (Burford et al., 2020). In some lakes, it may be possible
to manipulate stratification and mixing using engineered
systems, enabling the testing of model predictions at the
whole-lake scale (Jungo et al., 2001; Cantin et al., 2011;
Read et al., 2011; Chen et al., 2018; Lofton et al., 2019).

CONCLUSION

Bloom-forming freshwater cyanobacteria sequentially
occupy the benthic and pelagic zones in temperate and
boreal lakes, but typically only the pelagic life stage
is studied. Because stratification and mixing can have
opposing effects on the benthic and pelagic life stages
of cyanobacteria, a more complete understanding of
all stages of the cyanobacterial life cycle will enable
plankton researchers to better predict how ongoing
climate change will affect the frequency, intensity and
duration of cyanobacterial blooms.
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