1,145 research outputs found

    Mass transfer characteristics in structured packing for CO2 emission reduction processes

    Get PDF
    Acid gas treating and CO2 capture from flue gas by absorption have gained wide importance over the past few decades. With the implementation of more stringent environmental regulations and the awareness of the greenhouse effect, the need for efficient removal of acid gases such as CO2 (carbon dioxide) has increased significantly. Therefore, additional effort for research in this field is inevitable. For flue gas processes the ratio of absorption solvent to gas throughput is very different compared to acid gas treating processes owing to the atmospheric pressures and the dilution effect of combustion air. Moreover, in flue gas applications pressure drop is a very important process parameter. Packing types are required that allow for low pressure drop in combination with high interfacial areas at low liquid loading per square meter. The determination of interfacial areas in gas-liquid contactors by means of the chemical method (Danckwerts, P. V. Gas-liquid reactions; McGraw-Hill: London, 1970) has been very frequently applied. Unfortunately, many of the model systems proposed in the literature are reversible and therefore this condition possibly is not met. Versteeg et al. (Versteeg, G. F.; Kuipers, J. A. M.; Beckum, F. P. H.; van Swaaij, W. P. M. Chem. Eng. Sci. 1989, 44, 2292) have demonstrated that for reversible reactions the conditions for the determination of the interfacial area by means of the chemical method are much more severe. In a study by Raynal et al. (Raynal, L.; Ballaguet, J. P.; Berrere-Tricca, C. Chem. Eng. Sci. 2004, 59, 5395), it has been shown that there is a dependency of the interfacial area on the packing height. Unfortunately, most model systems used, e.g., CO2-caustic soda (as used by Raynal et al.), are much more complex and consist of (a set of) reversible reaction(s). The natures of these systems make the conditions at which the interfacial area can be determined much more severe and put more limitations on the process conditions and experimental equipment than a priori can be expected. Therefore, an extended absorption model is required to determine the conditions at which the interfacial area can be measured without detailed knowledge of the values of the liquid-side mass transfer coefficient, k1, beforehand.

    Function length as a tool for malware classification

    Full text link
    The proliferation of malware is a serious threat to computer and information systems throughout the world. Antimalware companies are continually challenged to identify and counter new malware as it is released into the wild. In attempts to speed up this identification and response, many researchers have examined ways to efficiently automate classification of malware as it appears in the environment. In this paper, we present a fast, simple and scalable method of classifying Trojans based only on the lengths of their functions. Our results indicate that function length may play a significant role in classifying malware, and, combined with other features, may result in a fast, inexpensive and scalable method of malware classification.<br /

    Mobile phones in Africa: how much do we really know?

    Get PDF
    Mobile phones are a crucial mode of communication and welfare enhancement in poor countries, especially those lacking an infrastructure of fixed lines. In recent years much has been written about how mobile telephony in Africa is rapidly reducing the digital divide with developed countries. Yet, when one examines the evidence it is not at all clear what is really happening. In one country, Tanzania, for example, some observers point to the fact that 97% of the population lives under the mobile footprint, while others show that ownership is very limited. These extreme values prompted us to review the situation in Africa as a whole, in an effort to discover what is really going on

    Multidisciplinary characterisation of sedimentary processes in a recent maar lake (Lake Pavin, French Massif Central) and implication for natural hazards

    Get PDF
    Sedimentation processes occurring in the most recent maar lake of the French Massif Central (Lake Pavin) are documented for the first time based on high resolution seismic reflection and multibeam bathymetric surveys and by piston coring and radiocarbon dating on a sediment depocentre developed on a narrow sub aquatic plateau. This new data set confirms the mid Holocene age of maar lake Pavin formation at 6970&amp;plusmn;60 yrs cal BP and highlights a wide range of gravity reworking phenomena affecting the basin. In particular, a slump deposit dated between AD 580–640 remoulded both mid-Holocene lacustrine sediments, terrestrial plant debris and some volcanic material from the northern crater inner walls. Between AD 1200 and AD 1300, a large slide scar mapped at 50 m depth also affected the southern edge of the sub aquatic plateau, suggesting that these gas-rich biogenic sediments (laminated diatomite) are poorly stable. Although several triggering mechanisms can be proposed for these prehistoric sub-aquatic mass wasting deposits in Lake Pavin, we argue that such large remobilisation of gas-rich sediments may affect the gas stability in deep waters of meromictic maar lakes. This study highlights the need to further document mass wasting processes in maar lakes and their impacts on the generation of waves, favouring the development of dangerous (and potentially deadly) limnic eruptions

    Alice: The Rosetta Ultraviolet Imaging Spectrograph

    Full text link
    We describe the design, performance and scientific objectives of the NASA-funded ALICE instrument aboard the ESA Rosetta asteroid flyby/comet rendezvous mission. ALICE is a lightweight, low-power, and low-cost imaging spectrograph optimized for cometary far-ultraviolet (FUV) spectroscopy. It will be the first UV spectrograph to study a comet at close range. It is designed to obtain spatially-resolved spectra of Rosetta mission targets in the 700-2050 A spectral band with a spectral resolution between 8 A and 12 A for extended sources that fill its ~0.05 deg x 6.0 deg field-of-view. ALICE employs an off-axis telescope feeding a 0.15-m normal incidence Rowland circle spectrograph with a concave holographic reflection grating. The imaging microchannel plate detector utilizes dual solar-blind opaque photocathodes (KBr and CsI) and employs a 2 D delay-line readout array. The instrument is controlled by an internal microprocessor. During the prime Rosetta mission, ALICE will characterize comet 67P/Churyumov-Gerasimenko's coma, its nucleus, and the nucleus/coma coupling; during cruise to the comet, ALICE will make observations of the mission's two asteroid flyby targets and of Mars, its moons, and of Earth's moon. ALICE has already successfully completed the in-flight commissioning phase and is operating normally in flight. It has been characterized in flight with stellar flux calibrations, observations of the Moon during the first Earth fly-by, and observations of comet Linear T7 in 2004 and comet 9P/Tempel 1 during the 2005 Deep Impact comet-collision observing campaignComment: 11 pages, 7 figure

    A European Pharmaceutical Aerosol Group (EPAG)-led cross-industry assessment of inlet flow rate profiles of compendial DPI test systems: Part 1 – experimental data

    Get PDF
    We report outcomes from an EPAG-led cross-industry study, characterizing flow rate/elapsed-time profiles of equipment used for testing dry powder inhalers (DPIs). A thermal mass flow sensor was used by nine organizations in a round-robin approach to record inlet flow rate-time profiles of individual participant compendial test systems (TS) including either sample collection tubes (SCT) or a cascade impactor (either the Andersen 8-stage non-viable impactor, ACI, or the Next Generation Impactor, NGI) equipped with USP/PhEur induction port and pre-separator. An inlet orifice generated a 4-kPa pressure drop at each of the target flow rates (30, 60 and 90 L/min), simulating a pressure drop typical for high-, medium- and low-resistance DPIs respectively. Rise times to 90% of these target flow rates (t90) were longest with largest internal dead volume and followed the order NGI>ACI >SCT>TS. When the surrogate DPI (4-kPa orifice) was absent, t90 values generally lengthened with increasing target flow rate. In contrast, the opposite behaviour was observed when the surrogate DPI was present. A flow acceleration parameter was also calculated, expressed as the slope between the 20% and 80% flow rates of each final steady flow value (slopet20/t80). Greater flow acceleration occurred at higher final flow rates, irrespective of apparatus, but the presence of the surrogate DPI was associated with slower flow acceleration. These flow rate-rise time profiles will be useful for those involved in evaluating equipment for characterizing both existing and new DPIs

    How uncertainty enables non-classical dynamics

    Full text link
    The uncertainty principle limits quantum states such that when one observable takes predictable values there must be some other mutually unbiased observables which take uniformly random values. We show that this restrictive condition plays a positive role as the enabler of non-classical dynamics in an interferometer. First we note that instantaneous action at a distance between different paths of an interferometer should not be possible. We show that for general probabilistic theories this heavily curtails the non-classical dynamics. We prove that there is a trade-off with the uncertainty principle, that allows theories to evade this restriction. On one extreme, non-classical theories with maximal certainty have their non-classical dynamics absolutely restricted to only the identity operation. On the other extreme, quantum theory minimises certainty in return for maximal non-classical dynamics.Comment: 4 pages + 4 page technical supplement, 2 figure
    corecore