283 research outputs found

    Measuring the magnetic axis alignment during solenoids working

    Get PDF
    A method for monitoring the misalignment of the magnetic axis in solenoids is proposed. This method requires only a few measurements of the magnetic field at fixed positions inside the magnet aperture, and thus overcomes the main drawback of sturdy moving mechanics of other Hall sensor-based methods. Conversely to state-of-the-art axis determination, the proposed method can be applied also during magnet operations, when the axis region and almost the whole remaining magnet aperture are not accessible. Moreover, only a few measurements of the magnetic field at fixed positions inside the magnet aperture are required: thus a slow process such as the mapping of the whole aperture of a magnet by means of moving stages is not necessary. The mathematical formulation of the method is explained, and a case study on a model of a multi–layer solenoid is presented. For this case study, the uncertainty is assessed and the optimal placement of the Hall transducers is derived

    The Use of Wearable Sensors for Preventing, Assessing, and Informing Recovery from Sport-Related Musculoskeletal Injuries: A Systematic Scoping Review

    Get PDF
    Wearable technologies are often indicated as tools that can enable the in-field collection of quantitative biomechanical data, unobtrusively, for extended periods of time, and with few spatial limitations. Despite many claims about their potential for impact in the area of injury prevention and management, there seems to be little attention to grounding this potential in biomechanical research linking quantities from wearables to musculoskeletal injuries, and to assessing the readiness of these biomechanical approaches for being implemented in real practice. We performed a systematic scoping review to characterise and critically analyse the state of the art of research using wearable technologies to study musculoskeletal injuries in sport from a biomechanical perspective. A total of 4952 articles were retrieved from the Web of Science, Scopus, and PubMed databases; 165 were included. Multiple study features—such as research design, scope, experimental settings, and applied context—were summarised and assessed. We also proposed an injury-research readiness classification tool to gauge the maturity of biomechanical approaches using wearables. Five main conclusions emerged from this review, which we used as a springboard to propose guidelines and good practices for future research and dissemination in the field

    The machine protection system for the ELI-NP gamma beam system

    Get PDF
    The new Gamma Beam System (GBS) of the ELI-NPproject [1], currently under installation in Magurele (RO)by INFN, as part of EuroGammas consortium, can providegamma rays that open new possibilities for nuclear photonicsand nuclear physics.ELI-NP gamma rays are produced by Compton back-scattering to get monochromaticity (0,1% bandwidth), highflux (1013photons), tunable direction and energy up to19.5 MeV. Such gamma beam is obtained when a high-intensity laser collides a high-brightness electron beam withenergies up to740 MeV, a repetition rate of100 Hz, withtrains of 32 bunches within the same RF bucket.An advanced Machine Protection System (MPS) has beendeveloped, in order to ensure proper operation for this chal-lenging facility. The MPS operates on different layers of thecontrol system and is interfaced with all its sub-systems. Forinstance, it comprises different kind of beam loss monitors(based on Cherenkov optical fiber), hall probes, fast currenttransformer together with BPMs, and an embedded systembased on FPGA with distributed I/O over EtherCAT, to mon-itor vacuum and RF systems [2], which require fast responseto be interlocked within one RF pulse

    Conceptual design of electron beam diagnostics for high brightness plasma accelerator

    Get PDF
    A design study of the diagnostics of a high brightness linac, based on X-band structures, and a plasma accelerator stage, has been delivered in the framework of the EuPRAXIA@SPARC_LAB project. In this paper, we present a conceptual design of the proposed diagnostics, using state of the art systems and new and under development devices. Single shot measurements are preferable for plasma accelerated beams, including emittance, while ÎĽ\mum level and fs scale beam size and bunch length respectively are requested. The needed to separate the driver pulse (both laser or beam) from the witness accelerated bunch imposes additional constrains for the diagnostics. We plan to use betatron radiation for the emittance measurement just at the end of the plasma booster, while other single-shot methods must be proven before to be implemented. Longitudinal measurements, being in any case not trivial for the fs level bunch length, seem to have already a wider range of possibilities

    Properties and skin compatibility of films based on poly(lactic acid) (PLA) bionanocomposites incorporating chitin nanofibrils (CN)

    Get PDF
    Nanobiocomposites suitable for preparing skin compatible films by flat die extrusion were prepared by using plasticized poly(lactic acid) (PLA), poly(butylene succinate-co-adipate) (PBSA), and Chitin nanofibrils as functional filler. Chitin nanofibrils (CNs) were dispersed in the blends thanks to the preparation of pre-nanocomposites containing poly(ethylene glycol). Thanks to the use of a melt strength enhancer (Plastistrength) and calcium carbonate, the processability and thermal properties of bionanocomposites films containing CNs could be tuned in a wide range. Moreover, the resultant films were flexible and highly resistant. The addition of CNs in the presence of starch proved not advantageous because of an extensive chain scission resulting in low values of melt viscosity. The films containing CNs or CNs and calcium carbonate resulted biocompatible and enabled the production of cells defensins, acting as indirect anti-microbial. Nevertheless, tests made with Staphylococcus aureus and Enterobacter spp. (Gram positive and negative respectively) by the qualitative agar diffusion test did not show any direct anti-microbial activity of the films. The results are explained considering the morphology of the film and the different mechanisms of direct and indirect anti-microbial action generated by the nanobiocomposite based films

    Chitin and Its Derivatives: Nanostructured Materials from Different Marine and Terrestrial Sources

    Get PDF
    Chitin is a very abundant polysaccharide that can be obtained from well-known marine sources (crustaceans), but also from terrestrial sources (mushrooms and insects). In the case where animal sources are considered, the material can be obtained by much abundant food or feeding waste. The extraction methodologies were not developed with similar technical readiness levels considering the different sources and the further conversion to chitin nanofibrils and chitosan is also under study, enabling the production of products differentiated for their macromolecular structures and morphology.Chitin nanofibrils from sea food sources were used in sanitary, cosmetic and packaging applications, where their anti-microbial properties and good biocompatibility were very useful. Chitin from mushrooms and sea food was used as starting material in possible coatings for cellulosic and bioplastic substrates. Currently chitin from insects (Hermetia Illucens) is also under study as well as the methodologies for extracting derivatives from it. Infrared analysis is an interesting technique to compare chitins, chitin nanofibrils and chitosan from different sources as well as electron microscopy for studying their morphology. The derivatives of chitin, such as chitosan and chitin nanofibrils, show anti-microbial properties. Hence, their use in several applications, ranging from packaging to sanitary and cosmetics, can conjugate high performance novel products with a reduced environmental concern. The comparison between chitin derivatives from different sources is very useful to address the biopolymers to specific applications, including the agricultural sector. While more and more applications for chitin derivatives will be developed, differences between them should be clarified and correlated to the sources, the methodologies of their production and their physical-chemical properties

    First magnetic measurements of fast-ramping dipole DHPTB102 of BTF upgraded beam-lines

    Get PDF
    In the framework of the BTF upgrade, aimed at realizing two beam-lines serving two distinct experimental areas, the splitting of the beam coming from the Linac is realized by a dipole, labelled DPTB102, with a bending angle of 15° and a fast ramping (<100 ms) in order to optimize the duty-cycle. This note reports on the first dimensional checks and magnetic measurements, performed in DC, intended for verifying the basic parameters of the magnet, like the excitation curve, the maximum field, and field quality
    • …
    corecore