525 research outputs found

    Effects of yeast combined with chromium propionate on growth performance and carcass quality of finishing steers

    Get PDF
    Citation: Vanbibber-Krueger, C. L., Axman, J. E., Gonzalez, J. M., Vahl, C. I., & Drouillard, J. S. (2016). Effects of yeast combined with chromium propionate on growth performance and carcass quality of finishing steers. Journal of Animal Science, 94(7), 3003-3011. doi:10.2527/jas2016-0454A combination of yeast and chromium propionate (Y+Cr) was added to the diets of crossbred finishing steers (n = 504; 402 kg ± 5.76 initial BW) to evaluate impact on feedlot performance and carcass traits. We hypothesized supplementation of Y+Cr would increase growth of feedlot steers. Steers with initial plasma glucose concentrations ?6.0 mM were stratified by initial BW and randomly allocated, within strata, to receive 0 (control) or 3.3 g/d Y+Cr. Steers were further divided into heavy and light weight blocks with 6 pens/diet within each weight block. Cattle were housed in dirt-surfaced pens with 21 steers/pen and had ad libitum access to feed. Body weights were measured at 21-d intervals. Blood samples were collected on d 49 and 94 from a subset of steers (5/pen) for analyses of plasma glucose and lactate concentrations. At the end of the finishing phase, animals were weighed and transported 450 km to an abattoir in Holcomb, KS. Severity of liver abscesses and HCW were collected the day of harvest, and after 36 h of refrigeration, USDA yield and quality grades, LM area, and 12th rib subcutaneous fat thickness were determined. There were no treatment × time × weight block interactions (P > 0.05) and no treatment × block interaction for ADG, DMI, or final BW (P ? 0.06), but a treatment × block interaction (P = 0.03) was observed for G:F, in which control, light cattle had poorer efficiency compared with other groups. Treatment × weight group interactions were observed for overall yield grade and carcasses that graded yield grade 1 (P ? 0.04). Light steers supplemented with Y+Cr had decreased overall yield grade and increased percentage of carcasses grading yield grade 1 compared with their control counterparts, with no differences observed for heavy steers. Regardless of weight group, a greater percentage of carcasses from steers supplemented with Y+Cr graded yield grade 2 (P = 0.03) and fewer carcasses from steers supplemented Y+Cr graded yield grade 3 (P 0.10). Overall, yeast in combination with chromium propionate may improve feed efficiency and decrease yield grade of light cattle but had no effect on remaining carcass traits and blood constituents. © 2016 American Society of Animal Science. All rights reserved

    Unsteady Thick Airfoil Aerodynamics: Experiments, Computation, and Theory

    Get PDF
    An experimental, computational and theoretical investigation was carried out to study the aerodynamic loads acting on a relatively thick NACA 0018 airfoil when subjected to pitching and surging, individually and synchronously. Both pre-stall and post-stall angles of attack were considered. Experiments were carried out in a dedicated unsteady wind tunnel, with large surge amplitudes, and airfoil loads were estimated by means of unsteady surface mounted pressure measurements. Theoretical predictions were based on Theodorsen's and Isaacs' results as well as on the relatively recent generalizations of van der Wall. Both two- and three-dimensional computations were performed on structured grids employing unsteady Reynolds-averaged Navier-Stokes (URANS). For pure surging at pre-stall angles of attack, the correspondence between experiments and theory was satisfactory; this served as a validation of Isaacs theory. Discrepancies were traced to dynamic trailing-edge separation, even at low angles of attack. Excellent correspondence was found between experiments and theory for airfoil pitching as well as combined pitching and surging; the latter appears to be the first clear validation of van der Wall's theoretical results. Although qualitatively similar to experiment at low angles of attack, two-dimensional URANS computations yielded notable errors in the unsteady load effects of pitching, surging and their synchronous combination. The main reason is believed to be that the URANS equations do not resolve wake vorticity (explicitly modeled in the theory) or the resulting rolled-up un- steady flow structures because high values of eddy viscosity tend to \smear" the wake. At post-stall angles, three-dimensional computations illustrated the importance of modeling the tunnel side walls

    A supplement containing multiple types of gluconeogenic substrates alters intake but not productivity of heat-stressed Afshari lambs

    Get PDF
    Citation: Mahjoubi, E., Amanlou, H., Yazdi, M. H., Aghaziarati, N., Noori, G. R., Vahl, C. I., . . . Baumgard, L. H. (2016). A supplement containing multiple types of gluconeogenic substrates alters intake but not productivity of heat-stressed Afshari lambs. Journal of Animal Science, 94(6), 2497-2505. doi:10.2527/jas2015-9697Thirty-two Afshari lambs were used in a completely randomized design with a 2 x 2 factorial arrangement of treatments to evaluate a nutritional supplement designed to provide multiple gluconeogenic precursors during heat stress (HS). Lambs were housed in thermal neutral (TN) conditions and fed ad libitum for 8 d to obtain covariate data (period 1 [P1]) for the subsequent experimental period (period 2 [P2]). During P2, which lasted 9 d, half of the lambs were subjected to HS and the other 16 lambs were maintained in TN conditions but pair fed (PFTN) to the HS lambs. Half of the lambs in each thermal regime were fed (top-dressed) 100 g/d of a feed supplement designed to provide gluconeogenic precursors (8 lambs in HS [heat stress with Glukosa {HSG}] and 8 lambs in PFTN [pair-fed thermal neutral with Glukosa]) and the other lambs in both thermal regimes were fed only the basal control diet (HS without Glukosa [HSC] and pair-fed thermal neutral without Glukosa). Heat stress decreased DMI (14%) and by design there were no differences between the thermal treatments, but HSG lambs had increased DMI (7.5%; P < 0.05) compared with the HSC lambs. Compared with PFTN lambs, rectal temperature and skin temperature at the rump, shoulder, and legs of HS lambs were increased (P < 0.05) at 0700 and 1400 h. Rectal temperature at 1400 h decreased for HSG lambs (0.15 +/- 0.03 degrees C; P < 0.05) compared with HSC lambs. Despite similar DMI between thermal treatments, ADG for HS and PFTN lambs in P2 was decreased 55 and 85%, respectively, compared with lambs in P1 (P < 0.01). Although the prefeeding glucose concentration was not affected by thermal treatment or diet, HSG lambs had increased postfeeding glucose concentration compared with HSC lambs (P < 0.05). In contrast to the glucose responses, circulating insulin was influenced only by thermal treatment; HS lambs had increased insulin concentration (P < 0.01) before feeding and decreased concentration (P < 0.05) after feeding compared with PFTN lambs. Heat-stressed lambs had decreased NEFA concentration before feeding (P < 0.01) but not after feeding relative to PFTN lambs. Although this nutritional strategy did not affect ADG, the lower rectal temperature in HSG lambs indicates that dietary inclusion of a mixture of glucogenic precursors can potentially benefit animal health during HS

    Feeding Nucleotides with Corn Germ Meal or Dried Corn Distillers Grains Does Not Promote Growth Performance of Receiving and Growing Calves

    Get PDF
    Corn germ meal is often used in swine and poultry diets, but very little information exists on the effects on beef cattle and on newly arrived stressed cattle. When formulating receiving and growing diets, calf health and stress are important factors to consider. Including nucleotides, an immune-boosting feed additive may aid in gastrointestinal health of an animal and furthermore improve growth performance. The objective of these experiments was to determine: 1) the effects of corn germ meal in comparison to dried corn distillers grains on growth performance and 2) the effects of nucleotides on growth performance, by receiving and growing cattle

    The spectrum of involuntary vocalizations in humans: A video atlas

    Get PDF
    In clinical practice, involuntary vocalizing behaviors are typically associated with Tourette syndrome and other tic disorders. However, they may also be encountered throughout the entire tenor of neuropsychiatry, movement disorders, and neurodevelopmental syndromes. Importantly, involuntary vocalizing behaviors may often constitute a predominant clinical sign, and, therefore, their early recognition and appropriate classification are necessary to guide diagnosis and treatment. Clinical literature and video‐documented cases on the topic are surprisingly scarce. Here, we pooled data from 5 expert centers of movement disorders, with instructive video material to cover the entire range of involuntary vocalizations in humans. Medical literature was also reviewed to document the range of possible etiologies associated with the different types of vocalizing behaviors and to explore treatment options. We propose a phenomenological classification of involuntary vocalizations within different categorical domains, including (1) tics and tic‐like vocalizations, (2) vocalizations as part of stereotypies, (3) vocalizations as part of dystonia or chorea, (4) continuous vocalizing behaviors such as groaning or grunting, (5) pathological laughter and crying, (6) vocalizations resembling physiological reflexes, and (7) other vocalizations, for example, those associated with exaggerated startle responses, as part of epilepsy and sleep‐related phenomena. We provide comprehensive lists of their associated etiologies, including neurodevelopmental, neurodegenerative, neuroimmunological, and structural causes and clinical clues. We then expand on the pathophysiology of the different vocalizing behaviors and comment on available treatment options. Finally, we present an algorithmic approach that covers the wide range of involuntary vocalizations in humans, with the ultimate goal of improving diagnostic accuracy and guiding appropriate treatment

    Biharmonic pattern selection

    Full text link
    A new model to describe fractal growth is discussed which includes effects due to long-range coupling between displacements uu. The model is based on the biharmonic equation 4u=0\nabla^{4}u =0 in two-dimensional isotropic defect-free media as follows from the Kuramoto-Sivashinsky equation for pattern formation -or, alternatively, from the theory of elasticity. As a difference with Laplacian and Poisson growth models, in the new model the Laplacian of uu is neither zero nor proportional to uu. Its discretization allows to reproduce a transition from dense to multibranched growth at a point in which the growth velocity exhibits a minimum similarly to what occurs within Poisson growth in planar geometry. Furthermore, in circular geometry the transition point is estimated for the simplest case from the relation rL/e1/2r_{\ell}\approx L/e^{1/2} such that the trajectories become stable at the growing surfaces in a continuous limit. Hence, within the biharmonic growth model, this transition depends only on the system size LL and occurs approximately at a distance 60%60 \% far from a central seed particle. The influence of biharmonic patterns on the growth probability for each lattice site is also analysed.Comment: To appear in Phys. Rev. E. Copies upon request to [email protected]

    Tuning ZnO Sensors Reactivity toward Volatile Organic Compounds via Ag Doping and Nanoparticle Functionalization

    Get PDF
    Nanomaterials for highly selective and sensitive sensors toward specific gas molecules of volatile organic compounds (VOCs) are most important in developing new-generation of detector devices, for example, for biomarkers of diseases as well as for continuous air quality monitoring. Here, we present an innovative preparation approach for engineering sensors, which allow for full control of the dopant concentrations and the nanoparticles functionalization of columnar material surfaces. The main outcome of this powerful design concept lies in fine-tuning the reactivity of the sensor surfaces toward the VOCs of interest. First, nanocolumnar and well-distributed Ag-doped zinc oxide (ZnO:Ag) thin films are synthesized from chemical solution, and, at a second stage, noble nanoparticles of the required size are deposited using a gas aggregation source, ensuring that no percolating paths are formed between them. Typical samples that were investigated are Ag-doped and Ag nanoparticle-functionalized ZnO:Ag nanocolumnar films. The highest responses to VOCs, in particular to (CH3)2CHOH, were obtained at a low operating temperature (250 °C) for the samples synergistically enhanced with dopants and nanoparticles simultaneously. In addition, the response times, particularly the recovery times, are greatly reduced for the fully modified nanocolumnar thin films for a wide range of operating temperatures. The adsorption of propanol, acetone, methane, and hydrogen at various surface sites of the Ag-doped Ag8/ZnO(0001) surface has been examined with the density functional theory (DFT) calculations to understand the preference for organic compounds and to confirm experimental results. The response of the synergistically enhanced sensors to gas molecules containing certain functional groups is in excellent agreement with density functional theory calculations performed in this work too. This new fabrication strategy can underpin the next generation of advanced materials for gas sensing applications and prevent VOC levels that are hazardous to human health and can cause environmental damages
    corecore