6,389 research outputs found

    Impediments to mixing classical and quantum dynamics

    Full text link
    The dynamics of systems composed of a classical sector plus a quantum sector is studied. We show that, even in the simplest cases, (i) the existence of a consistent canonical description for such mixed systems is incompatible with very basic requirements related to the time evolution of the two sectors when they are decoupled. (ii) The classical sector cannot inherit quantum fluctuations from the quantum sector. And, (iii) a coupling among the two sectors is incompatible with the requirement of physical positivity of the theory, i.e., there would be positive observables with a non positive expectation value.Comment: RevTex, 21 pages. Title slightly modified and summary section adde

    The role of infrared divergence for decoherence

    Get PDF
    Continuous and discrete superselection rules induced by the interaction with the environment are investigated for a class of exactly soluble Hamiltonian models. The environment is given by a Boson field. Stable superselection sectors emerge if and only if the low frequences dominate and the ground state of the Boson field disappears due to infrared divergence. The models allow uniform estimates of all transition matrix elements between different superselection sectors.Comment: 11 pages, extended and simplified proo

    Incoherent dynamics in neutron-matter interaction

    Get PDF
    Coherent and incoherent neutron-matter interaction is studied inside a recently introduced approach to subdynamics of a macrosystem. The equation describing the interaction is of the Lindblad type and using the Fermi pseudopotential we show that the commutator term is an optical potential leading to well-known relations in neutron optics. The other terms, usually ignored in optical descriptions and linked to the dynamic structure function of the medium, give an incoherent contribution to the dynamics, which keeps diffuse scattering and attenuation of the coherent beam into account, thus warranting fulfilment of the optical theorem. The relevance of this analysis to experiments in neutron interferometry is briefly discussed.Comment: 15 pages, revtex, no figures, to appear in Phys. Rev.

    Fermi's golden rule and exponential decay as a RG fixed point

    Full text link
    We discuss the decay of unstable states into a quasicontinuum using models of the effective Hamiltonian type. The goal is to show that exponential decay and the golden rule are exact in a suitable scaling limit, and that there is an associated renormalization group (RG) with these properties as a fixed point. The method is inspired by a limit theorem for infinitely divisible distributions in probability theory, where there is a RG with a Cauchy distribution, i.e. a Lorentz line shape, as a fixed point. Our method of solving for the spectrum is well known; it does not involve a perturbation expansion in the interaction, and needs no assumption of a weak interaction. We use random matrices for the interaction, and show that the ensemble fluctuations vanish in the scaling limit. Thus the limit is the same for every model in the ensemble with probability one.Comment: 20 pages, 1 figur

    Multiplicity Distributions and Rapidity Gaps

    Get PDF
    I examine the phenomenology of particle multiplicity distributions, with special emphasis on the low multiplicities that are a background in the study of rapidity gaps. In particular, I analyze the multiplicity distribution in a rapidity interval between two jets, using the HERWIG QCD simulation with some necessary modifications. The distribution is not of the negative binomial form, and displays an anomalous enhancement at zero multiplicity. Some useful mathematical tools for working with multiplicity distributions are presented. It is demonstrated that ignoring particles with pt<0.2 has theoretical advantages, in addition to being convenient experimentally.Comment: 24 pages, LaTeX, MSUHEP/94071

    Bifurcation Phenomenon in a Spin Relaxation

    Full text link
    Spin relaxation in a strong-coupling regime (with respect to the spin system) is investigated in detail based on the spin-boson model in a stochastic limit. We find a bifurcation phenomenon in temperature dependence of relaxation constants, which is never observed in the weak-coupling regime. We also discuss inequalities among the relaxation constants in our model and show the well-known relation 2\Gamma_T >= \Gamma_L, for example, for a wider parameter region than before.Comment: REVTeX4, 5 pages, 5 EPS figure

    Applications of Canonical Transformations

    Full text link
    Canonical transformations are defined and discussed along with the exponential, the coherent and the ultracoherent vectors. It is shown that the single-mode and the nn-mode squeezing operators are elements of the group of canonical transformations. An application of canonical transformations is made, in the context of open quantum systems, by studying the effect of squeezing of the bath on the decoherence properties of the system. Two cases are analyzed. In the first case the bath consists of a massless bosonic field with the bath reference states being the squeezed vacuum states and squeezed thermal states while in the second case a system consisting of a harmonic oscillator interacting with a bath of harmonic oscillators is analyzed with the bath being initially in a squeezed thermal state.Comment: 14 page

    Is the dynamics of open quantum systems always linear?

    Full text link
    We study the influence of the preparation of an open quantum system on its reduced time evolution. In contrast to the frequently considered case of an initial preparation where the total density matrix factorizes into a product of a system density matrix and a bath density matrix the time evolution generally is no longer governed by a linear map nor is this map affine. Put differently, the evolution is truly nonlinear and cannot be cast into the form of a linear map plus a term that is independent of the initial density matrix of the open quantum system. As a consequence, the inhomogeneity that emerges in formally exact generalized master equations is in fact a nonlinear term that vanishes for a factorizing initial state. The general results are elucidated with the example of two interacting spins prepared at thermal equilibrium with one spin subjected to an external field. The second spin represents the environment. The field allows the preparation of mixed density matrices of the first spin that can be represented as a convex combination of two limiting pure states, i.e. the preparable reduced density matrices make up a convex set. Moreover, the map from these reduced density matrices onto the corresponding density matrices of the total system is affine only for vanishing coupling between the spins. In general, the set of the accessible total density matrices is nonconvex.Comment: 19 pages, 3 figures, minor changes to improve readability, discussion on Mori's linear regime and references adde
    • …
    corecore