10,728 research outputs found

    Vertebrates Removed by Mechanical Weed Harvesting in Lake Keesus, Wisconsin

    Get PDF
    Mechanical weed harvesting has been used to control nuisance vegetation in Lake Keesus since 1979. Fish, turtles, and amphibians often become entangled in the vegetation and are incidentally removed from the lake while harvesting weeds. Mechanical harvesting removed 2 to 8% of the standing crop of juvenile fish in harvested areas in Saratoga Lake, New York (Mikol 1985) and 32% of the fish population in harvested areas in Orange Lake, Florida, representing an estimated replacement value of $6000 per ha (Haller et al. 19890). Engle (1990) found mechanical harvesting removed 21,000 to 31,000 fish per year from Lake Halverson, Wisconsin, representing 25% of the fry in the lake. Little other current information has been published concerning aquatic vertebrate removal by mechanical weed harvesting in Wisconsin, though it is a commonly used management tool. Additionally, only Engle (1990) reported information on the removal of turtles relative to weed harvesting, but none on amphibians. The objective of this study was to document the number, species, and size of vertebrates removed by mechanically harvesting weeds in Lake Keesus

    Prediction of the thermal environment and thermal response of simple panels exposed to radiant heat

    Get PDF
    A method of predicting the radiant heat flux distribution produced by a bank of tubular quartz heaters was applied to a radiant system consisting of a single unreflected lamp irradiating a flat metallic incident surface. In this manner, the method was experimentally verified for various radiant system parameter settings and used as a source of input for a finite element thermal analysis. Two finite element thermal analyses were applied to a thermal system consisting of a thin metallic panel exposed to radiant surface heating. A two-dimensional steady-state finite element thermal analysis algorithm, based on Galerkin's Method of Weighted Residuals (GFE), was formulated specifically for this problem and was used in comparison to the thermal analyzers of the Engineering Analysis Language (EAL). Both analyses allow conduction, convection, and radiation boundary conditions. Differences in the respective finite element formulation are discussed in terms of their accuracy and resulting comparison discrepancies. The thermal analyses are shown to perform well for the comparisons presented here with some important precautions about the various boundary condition models. A description of the experiment, corresponding analytical modeling, and resulting comparisons are presented

    Energy shedding during nonlinear self-focusing of optical beams

    Get PDF
    Self-focusing of intense laser beams and pulses of light in real nonlinear media is in general accompanied by material losses that require corrections to the conservative Nonlinear Schrödinger equations describing their propagation. Here we examine loss mechanisms that exist even in lossless media and are caused by shedding of energy away from the self-trapping beam making it to relax to an exact solution of lower energy. Using the conservative NLS equations with absorbing boundary conditions we show that energy shedding not only occurs during the initial reshaping process but also during oscillatory propagation induced by saturation of the nonlinear effect. For pulsed input we also show that, depending on the sign and magnitude of dispersion, pulse splitting, energy shedding, collapse or stable self-focusing may result

    Asteroseismic modeling of 16 Cyg A & B using the complete Kepler data set

    Full text link
    Asteroseismology of bright stars with well-determined properties from parallax measurements and interferometry can yield precise stellar ages and meaningful constraints on the composition. We substantiate this claim with an updated asteroseismic analysis of the solar-analog binary system 16 Cyg A & B using the complete 30-month data sets from the Kepler space telescope. An analysis with the Asteroseismic Modeling Portal (AMP), using all of the available constraints to model each star independently, yields the same age (t=7.0±0.3t=7.0 \pm 0.3 Gyr) and composition (Z=0.021±0.002Z=0.021 \pm 0.002, Yi=0.25±0.01Y_i=0.25 \pm 0.01) for both stars, as expected for a binary system. We quantify the accuracy of the derived stellar properties by conducting a similar analysis of a Kepler-like data set for the Sun, and we investigate how the reliability of asteroseismic inference changes when fewer observational constraints are available or when different fitting methods are employed. We find that our estimates of the initial helium mass fraction are probably biased low by 0.02-0.03 from neglecting diffusion and settling of heavy elements, and we identify changes to our fitting method as the likely source of small shifts from our initial results in 2012. We conclude that in the best cases reliable stellar properties can be determined from asteroseismic analysis even without independent constraints on the radius and luminosity.Comment: 5 emulateapj pages, 1 table, 1 figure. ApJ Letters, accepte

    College Cost Reduction and Access Act: A Good Step, but Only a Step

    Get PDF

    Examining Motivators That Influenced African American and Latinx Students to Degree Completion of a Doctoral Program

    Get PDF
    This applied dissertation was designed to provide an investigation of the motivators that influence African American and Latinx students to complete a doctoral program. There are numerous studies that show data on low enrollment and retention of this population. Further, there is ample evidence of attrition, but there is a need to hear their voices share the experiences of successful doctoral graduates from this population. The researcher posited systemic racism in education caused low enrollment and graduation rates among African American and Latinx students. Then, an interview protocol was developed to elicit responses regarding what caused the persistence to complete the doctoral program. An analysis of the narrative did not expose systemic racism in education, rather it revealed African American and Latinx students who were supported by academic mentors who encouraged them; friends, family, and colleagues who motivated them to enroll in higher education programs; their self-motivation to enroll; determination to complete the degree; and how they were able to overcome obstacles including isolation and loneliness, particularly during the dissertation stage to graduate with the doctorate degree. Participants suggested future doctorate students know what career they want before they start a program. They recommended that universities make the doctorate degree more affordable, provide better access to resources, hire more faculty and administrators of color, and offer mentorship programs to encourage this population to enroll and complete the doctorate degree
    corecore