257 research outputs found

    Concurrent validity and reliability of a semi-automated approach to measuring the magnetic resonance imaging morphology of the knee joint in active youth

    Get PDF
    Post-traumatic knee osteoarthritis is attributed to alterations in joint morphology, alignment, and biomechanics triggered by injury. While magnetic resonance (MR) imaging-based measures of joint morphology and alignment are relevant to understanding osteoarthritis risk, time consuming manual data extraction and measurement limit the number of outcomes that can be considered and deter widespread use. This paper describes the development and evaluation of a semi-automated software for measuring tibiofemoral and patellofemoral joint architecture using MR images from youth with and without a previous sport-related knee injury. After prompting users to identify and select key anatomical landmarks, the software can calculate 37 (14 tibiofemoral, 23 patellofemoral) relevant geometric features (morphology and alignment) based on established methods. To assess validity and reliability, 11 common geometric features were calculated from the knee MR images (proton density and proton density fat saturation sequences; 1.5 T) of 76 individuals with a 3-10-year history of youth sport-related knee injury and 76 uninjured controls. Spearman's or Pearson's correlation coefficients (95% CI) and Bland-Altman plots were used to assess the concurrent validity of the semi-automated software (novice rater) versus expert manual measurements, while intra-class correlation coefficients (ICC 2,1; 95%CI), standard error of measurement (95%CI), 95% minimal detectable change, and Bland-Altman plots were used to assess the inter-rater reliability of the semi-automated software (novice vs resident radiologist rater). Correlation coefficients ranged between 0.89 (0.84, 0.92; Lateral Trochlear Inclination) and 0.97 (0.96, 0.98; Patellar Tilt Angle). ICC estimates ranged between 0.79 (0.63, 0.88; Lateral Patellar Tilt Angle) and 0.98 (0.95, 0.99; Bisect Offset). Bland-Altman plots did not reveal systematic bias. These measurement properties estimates are equal, if not better than previously reported methods suggesting that this novel semi-automated software is an accurate, reliable, and efficient alternative method for measuring large numbers of geometric features of the tibiofemoral and patellofemoral joints from MR studies. </p

    The GALAH survey: New diffuse interstellar bands found in residuals of 872,000 stellar spectra

    Full text link
    We use more than 872,000 mid-to-high resolution (R \sim 20,000) spectra of stars from the GALAH survey to discern the spectra of diffuse interstellar bands (DIBs). We use four windows with the wavelength range from 4718 to 4903, 5649 to 5873, 6481 to 6739, and 7590 to 7890 \AA, giving a total coverage of 967 \AA. We produce \sim400,000 spectra of interstellar medium (ISM) absorption features and correct them for radial velocities of the DIB clouds. Ultimately, we combine the 33,115 best ISM spectra into six reddening bins with a range of 0.1mag<E(BV)<0.7mag0.1 \,\mathrm{mag} < E\mathrm{(B-V)} < 0.7\, \mathrm{mag}. A total of 183 absorption features in these spectra qualify as DIBs, their fitted model parameters are summarized in a detailed catalogue. From these, 64 are not reported in the literature, among these 17 are certain, 14 are probable and 33 are possible. We find that the broad DIBs can be fitted with a multitude of narrower DIBs. Finally, we create a synthetic DIB spectrum at unit reddening which should allow us to narrow down the possible carriers of DIBs and explore the composition of the ISM and ultimately better model dust and star formation as well as to correct Galactic and extragalactic observations. The majority of certain DIBs show a significant excess of equivalent width when compared to reddening. We explain this with observed lines of sight penetrating more uniform DIB clouds compared to clumpy dust clouds.Comment: 28 pages, 15 figures, 11 tables, accepted for publication in MNRA

    4MOST Consortium Survey 3: Milky Way Disc and Bulge Low-Resolution Survey (4MIDABLE-LR)

    Full text link
    The mechanisms of the formation and evolution of the Milky Way are encoded in the orbits, chemistry and ages of its stars. With the 4MOST MIlky way Disk And BuLgE Low-Resolution Survey (4MIDABLE-LR) we aim to study kinematic and chemical substructures in the Milky Way disc and bulge region with samples of unprecedented size out to larger distances and greater precision than conceivable with Gaia alone or any other ongoing or planned survey. Gaia gives us the unique opportunity for target selection based almost entirely on parallax and magnitude range, hence increasing the efficiency in sampling larger Milky Way volumes with well-defined and effective selection functions. Our main goal is to provide a detailed chrono-chemo-kinematical extended map of our Galaxy and the largest Gaia follow-up down to G=19G = 19 magnitudes (Vega). The complex nature of the disc components (for example, large target densities and highly structured extinction distribution in the Milky Way bulge and disc area), prompted us to develop a survey strategy with five main sub-surveys that are tailored to answer the still open questions about the assembly and evolution of our Galaxy, while taking full advantage of the Gaia data.Comment: Part of the 4MOST issue of The Messenger, published in preparation of 4MOST Community Workshop, see http://www.eso.org/sci/meetings/2019/4MOST.htm

    Essential and checkpoint functions of budding yeast ATM and ATR during meiotic prophase are facilitated by differential phosphorylation of a meiotic adaptor protein, Hop1

    Get PDF
    A hallmark of the conserved ATM/ATR signalling is its ability to mediate a wide range of functions utilizing only a limited number of adaptors and effector kinases. During meiosis, Tel1 and Mec1, the budding yeast ATM and ATR, respectively, rely on a meiotic adaptor protein Hop1, a 53BP1/Rad9 functional analog, and its associated kinase Mek1, a CHK2/Rad53-paralog, to mediate multiple functions: control of the formation and repair of programmed meiotic DNA double strand breaks, enforcement of inter-homolog bias, regulation of meiotic progression, and implementation of checkpoint responses. Here, we present evidence that the multi-functionality of the Tel1/Mec1-to-Hop1/Mek1 signalling depends on stepwise activation of Mek1 that is mediated by Tel1/Mec1 phosphorylation of two specific residues within Hop1: phosphorylation at the threonine 318 (T318) ensures the transient basal level Mek1 activation required for viable spore formation during unperturbed meiosis. Phosphorylation at the serine 298 (S298) promotes stable Hop1-Mek1 interaction on chromosomes following the initial phospho-T318 mediated Mek1 recruitment. In the absence of Dmc1, the phospho-S298 also promotes Mek1 hyper-activation necessary for implementing meiotic checkpoint arrest. Taking these observations together, we propose that the Hop1 phospho-T318 and phospho-S298 constitute key components of the Tel1/Mec1- based meiotic recombination surveillance (MRS) network and facilitate effective coupling of meiotic recombination and progression during both unperturbed and challenged meiosis

    Budding yeast ATM/ATR control meiotic double-strand break (DSB) levels by down-regulating Rec114, an essential component of the DSB-machinery

    Get PDF
    An essential feature of meiosis is Spo11 catalysis of programmed DNA double strand breaks (DSBs). Evidence suggests that the number of DSBs generated per meiosis is genetically determined and that this ability to maintain a pre-determined DSB level, or "DSB homeostasis", might be a property of the meiotic program. Here, we present direct evidence that Rec114, an evolutionarily conserved essential component of the meiotic DSB-machinery, interacts with DSB hotspot DNA, and that Tel1 and Mec1, the budding yeast ATM and ATR, respectively, down-regulate Rec114 upon meiotic DSB formation through phosphorylation. Mimicking constitutive phosphorylation reduces the interaction between Rec114 and DSB hotspot DNA, resulting in a reduction and/or delay in DSB formation. Conversely, a non-phosphorylatable rec114 allele confers a genome-wide increase in both DSB levels and in the interaction between Rec114 and the DSB hotspot DNA. These observations strongly suggest that Tel1 and/or Mec1 phosphorylation of Rec114 following Spo11 catalysis down-regulates DSB formation by limiting the interaction between Rec114 and DSB hotspots. We also present evidence that Ndt80, a meiosis specific transcription factor, contributes to Rec114 degradation, consistent with its requirement for complete cessation of DSB formation. Loss of Rec114 foci from chromatin is associated with homolog synapsis but independent of Ndt80 or Tel1/Mec1 phosphorylation. Taken together, we present evidence for three independent ways of regulating Rec114 activity, which likely contribute to meiotic DSBs-homeostasis in maintaining genetically determined levels of breaks

    The Gaia-ESO Survey: A new diagnostic for accretion and outflow activity in the young cluster NGC 2264

    Get PDF
    Context. NGC 2264 is a young cluster whose accretion properties can be investigated in detail by taking advantage of the FLAMES data in the context of the Gaia-ESO Survey. In fact, the analysis of the Hα emission line profile can provide us with information about the accretion and ejection activity of young stars. However, a strong nebular emission that contributes to the Hα emission can alter the profiles, with consequences for their physical interpretation. Aims. Our study is aimed at investigating the accretion and ejection properties of NGC 2264 by applying a proper treatment of the sky contribution to the Hα and forbidden emission lines (FELs; [SII] and [NII] doublets). Methods. We developed a tool, the OHαNA-method, to handle the strong nebular contribution and spectra with spurious profiles of the Hα and FELs, namely altered Hα profiles or absorption features artificially created where emission lines (FELs) are expected. We derived the quantitative measurements of relevant parameters to describe the accretion and ejection processes in young members of NGC 2264, focusing on reliable quantities derived from the width of the lines, which is relatively unaffected by the nebular emission, unlike the intensity peak, which can be altered significantly. Results. We derive the quantitative measurements related to the Hα emission line and discuss the comparison between the original and sky-subtracted spectra. We thus reveal possible profile alterations with consequences for their physical interpretation. Furthermore, we show the analysis of the variability for multi-epoch observations, also deriving the velocity of the infalling and outflowing plasma from the wings of the broad Hα emission line (in accreting stars). We also explore the mass accretion rate versus full width at zero intensity of the Hα line, namely Ṁ versus FWZI(Hα), a correlation based on the width of the emission line, which is expected to be more robust with respect to any measurement derived from the peak (e.g., Hα10%) and possibly altered by the nebular contribution. Conclusions. We are able to ascertain that more than 20% of the confirmed accretors, which have already been identified in NGC 2264, are affected by the alteration of their line profiles due to the contribution of the nebular emission. Therefore, this is an important issue to consider when investigating accretion and ejection processes in young stellar clusters. While a small fraction of spectra can be unequivocally classified as either unaffected by nebular emission or dominated by nebular emission, the majority (&gt; 90%) represent intermediate cases whose spectral features have to be investigated in detail to derive reliable measurements of the relevant parameters and their physical implications.</jats:p

    Ginzburg-Landau theory of superconductors with short coherence length

    Full text link
    We consider Fermions in two dimensions with an attractive interaction in the singlet d-wave channel of arbitrary strength. By means of a Hubbard-Stratonovich transformation a statistical Ginzburg-Landau theory is derived, which describes the smooth crossover from a weak-coupling BCS superconductor to a condensate of composite Bosons. Adjusting the interaction strength to the observed slope of H_c2 at T_c in the optimally doped high-T_c compounds YBCO and BSCCO, we determine the associated values of the Ginzburg-Landau correlation length xi and the London penetration depth lambda. The resulting dimensionless ratio k_F xi(0) approx 5-8 and the Ginzburg-Landau parameter kappa=lambda xi approx 90-100 agree well with the experimentally observed values. These parameters indicate that the optimally doped materials are still on the weak coupling side of the crossover to a Bose regime.Comment: 12 pages, RevTeX, 6 postscript figures, resubmitted with minor changes in section III, to appear in Physical Review

    Nonperturbative XY-model approach to strong coupling superconductivity in two and three dimensions

    Full text link
    For an electron gas with delta-function attraction we investigate the crossover from weak- to strong-coupling supercoductivity in two and three dimensions. We derive analytic expressions for the stiffness of phase fluctuations and set up effective XY-models which serve to determine nonperturbatively the temperature of phase decoherence where superconductivity breaks down. We find the transition temperature T_c as a monotonous function of the coupling strength and carrier density both in two and three dimensions, and give analytic formulas for the merging of the temperature of phase decoherence with the temperature of pair formation in the weak-coupling limit.Comment: Few typos corrected. Emails that were sent to the address [email protected] in June and July 1999 were lost in a computer crash, so if your comments were not answered please send them once mor

    The Gaia-ESO Survey: new spectroscopic binaries in the Milky Way

    Full text link
    The Gaia-ESO Survey (GES) is a large public spectroscopic survey which acquired spectra for more than 100000 stars across all major components of the Milky Way. In addition to atmospheric parameters and stellar abundances that have been derived in previous papers of this series, the GES spectra allow us to detect spectroscopic binaries with one (SB1), two (SB2) or more (SBn \ge 3) components. Cross-correlation functions (CCFs) have been re-computed thanks to a dozen spectral masks probing a range of effective temperatures, surface gravities and metallicities. By optimising the mask choice for a given spectrum, the new computed so-called Nacre (Narrow cross-correlation experiment) CCFs are narrower and allow to unblend more stellar components than standard masks. The Doe (Detection of Extrema) extremum-finding code then selects the individual components and provides their radial velocities. From the sample of HR10 and HR21 spectra corresponding to 37565 objects, the present study leads to the detection of 322 SB2, ten (three of them being tentative) SB3, and two tentative SB4. In particular, compared to our previous study, the Nacre CCFs allow us to multiply the number of SB2 candidates by \approx 1.5. The colour-magnitude diagram reveals, as expected, the shifted location of the SB2 main sequence. A comparison between the SB identified in Gaia DR3 and the ones detected in the present work is performed and the complementarity of the two censuses is discussed. An application to mass-ratio determination is presented, and the mass-ratio distribution of the GES SB2 is discussed. When accounting for the SB2 detection rate, an SB2 frequency of \approx 1.4% is derived within the present stellar sample of mainly FGK-type stars. As primary outliers identified within the GES data, SBn spectra produce a wealth of information and useful constraints for the binary population synthesis studies

    4MOST Consortium Survey 4: Milky Way Disc and Bulge High-Resolution Survey (4MIDABLE-HR)

    Full text link
    The signatures of the formation and evolution of a galaxy are imprinted in its stars. Their velocities, ages, and chemical compositions present major constraints on models of galaxy formation, and on various processes such as the gas inflows and outflows, the accretion of cold gas, radial migration, and the variability of star formation activity. Understanding the evolution of the Milky Way requires large observational datasets of stars via which these quantities can be determined accurately. This is the science driver of the 4MOST MIlky way Disc And BuLgE High-Resolution (4MIDABLE-HR) survey: to obtain high-resolution spectra at R20000R \sim 20\,000 and to provide detailed elemental abundances for large samples of stars in the Galactic disc and bulge. High data quality will allow us to provide accurate spectroscopic diagnostics of two million stellar spectra: precise radial velocities; rotation; abundances of many elements, including those that are currently only accessible in the optical, such as Li, s-, and r-process; and multi-epoch spectra for a sub-sample of stars. Synergies with complementary missions like Gaia and TESS will provide masses, stellar ages and multiplicity, forming a multi-dimensional dataset that will allow us to explore and constrain the origin and structure of the Milky Way.Comment: Part of the 4MOST issue of The Messenger, published in preparation of 4MOST Community Workshop, see http://www.eso.org/sci/meetings/2019/4MOST.htm
    corecore