77 research outputs found

    Pre-discovery observations of CoRoT-1b and CoRoT-2b with the BEST survey

    Full text link
    The BEST wide-angle telescope installed at the Observatoire de Haute-Provence and operated in remote control from Berlin by the Institut fuer Planetenforschung, DLR, has observed the CoRoT target fields prior to the mission. The resulting archive of stellar photometric lightcurves is used to search for deep transit events announced during CoRoT's alarm-mode to aid in fast photometric confirmation of these events. The "initial run" field of CoRoT (IRa01) has been observed with BEST in November and December 2006 for 12 nights. The first "long run" field (LRc01) was observed from June to September 2005 for 35 nights. After standard CCD data reduction, aperture photometry has been performed using the ISIS image subtraction method. About 30,000 lightcurves were obtained in each field. Transits of the first detected planets by the CoRoT mission, CoRoT-1b and CoRoT-2b, were found in archived data of the BEST survey and their lightcurves are presented here. Such detections provide useful information at the early stage of the organization of follow-up observations of satellite alarm-mode planet candidates. In addition, no period change was found over ~4 years between the first BEST observation and last available transit observations.Comment: AJ, accepte

    Wavefront-Error Performance Characterization for the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) Science Instruments

    Get PDF
    The science instruments (SIs) comprising the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) were tested in three cryogenic-vacuum test campaigns in the NASA Goddard Space Flight Center (GSFC)'s Space Environment Simulator (SES) test chamber. In this paper, we describe the results of optical wavefront-error performance characterization of the SIs. The wavefront error is determined using image-based wavefront sensing, and the primary data used by this process are focus sweeps, a series of images recorded by the instrument under test in its as-used configuration, in which the focal plane is systematically changed from one image to the next. High-precision determination of the wavefront error also requires several sources of secondary data, including 1) spectrum, apodization, and wavefront-error characterization of the optical ground-support equipment (OGSE) illumination module, called the OTE Simulator (OSIM), 2) F-number and pupil-distortion measurements made using a pseudo-nonredundant mask (PNRM), and 3) pupil geometry predictions as a function of SI and field point, which are complicated because of a tricontagon-shaped outer perimeter and small holes that appear in the exit pupil due to the way that different light sources are injected into the optical path by the OGSE. One set of wavefront-error tests, for the coronagraphic channel of the Near-Infrared Camera (NIRCam) Longwave instruments, was performed using data from transverse translation diversity sweeps instead of focus sweeps, in which a sub-aperture is translated and/or rotated across the exit pupil of the system. Several optical-performance requirements that were verified during this ISIM-level testing are levied on the uncertainties of various wavefront-error-related quantities rather than on the wavefront errors themselves. This paper also describes the methodology, based on Monte Carlo simulations of the wavefront-sensing analysis of focus-sweep data, used to establish the uncertainties of the wavefront-error maps

    Evidence for a Control of Plasma Serotonin Levels by 5-Hydroxytryptamine 2B

    Full text link

    Wavefront-Error Performance Characterization for the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) Science Instruments

    Get PDF
    The science instruments (SIs) comprising the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) were tested in three cryogenic-vacuum test campaigns in the NASA Goddard Space Flight Center (GSFC)'s Space Environment Simulator (SES). In this paper, we describe the results of optical wavefront-error performance characterization of the SIs. The wavefront error is determined using image-based wavefront sensing (also known as phase retrieval), and the primary data used by this process are focus sweeps, a series of images recorded by the instrument under test in its as-used configuration, in which the focal plane is systematically changed from one image to the next. High-precision determination of the wavefront error also requires several sources of secondary data, including 1) spectrum, apodization, and wavefront-error characterization of the optical ground-support equipment (OGSE) illumination module, called the OTE Simulator (OSIM), 2) plate scale measurements made using a Pseudo-Nonredundant Mask (PNRM), and 3) pupil geometry predictions as a function of SI and field point, which are complicated because of a tricontagon-shaped outer perimeter and small holes that appear in the exit pupil due to the way that different light sources are injected into the optical path by the OGSE. One set of wavefront-error tests, for the coronagraphic channel of the Near-Infrared Camera (NIRCam) Longwave instruments, was performed using data from transverse translation diversity sweeps instead of focus sweeps, in which a sub-aperture is translated andor rotated across the exit pupil of the system.Several optical-performance requirements that were verified during this ISIM-level testing are levied on the uncertainties of various wavefront-error-related quantities rather than on the wavefront errors themselves. This paper also describes the methodology, based on Monte Carlo simulations of the wavefront-sensing analysis of focus-sweep data, used to establish the uncertainties of the wavefront error maps

    A life in the country

    Get PDF
    We present a practical approach to isotropic tetrahedral meshing of 3D domains bounded by piecewise smooth surfaces. Building upon recent theoretical and practical advances, our algorithm interleaves Delaunay refinement and mesh optimization to generate quality meshes that satisfy a set of user-defined criteria. This interleaving is shown to be more conservative in number of Steiner point insertions than refinement alone, and to produce higher quality meshes than optimization alone. A careful treatment of boundaries and their features is presented, offering a versatile framework for designing smoothly graded tetrahedral meshes
    • …
    corecore