594 research outputs found

    Collective spontaneous emission in a q-deformed Dicke model

    Full text link
    The q-deformation of a single quantized radiation mode interacting with a collection of two level atoms is introduced, analysing its effects on the cooperative behavior of the system.Comment: 11 pages, RevTeX file, 2 figures available from authors, accepted for publication in Mod. Phys. Lett.

    Targeting qubit states using open-loop control

    Get PDF
    We present an open-loop (bang-bang) scheme which drives an open two-level quantum system to any target state, while maintaining quantum coherence throughout the process. The control is illustrated by a realistic simulation for both adiabatic and thermal decoherence. In the thermal decoherence regime, the control achieved by the proposed scheme is qualitatively similar, at the ensemble level, to the control realized by the quantum feedback scheme of Wang, Wiseman, and Milburn [Phys. Rev. A 64, #063810 (2001)] for the spontaneous emission of a two-level atom. The performance of the open-loop scheme compares favorably against the quantum feedback scheme with respect to robustness, target fidelity and transition times.Comment: 27 pages, 7 figure

    Quantum State Reconstruction of a Bose-Einstein Condensate

    Get PDF
    We propose a tomographic scheme to reconstruct the quantum state of a Bose-Einstein condensate, exploiting the radiation field as a probe and considering the atomic internal degrees of freedom. The density matrix in the number state basis can be directly retrieved from the atom counting probabilities.Comment: 11 pages, LaTeX file, no figures, to appear in Europhysics Letter

    Discovery of ultra-fast outflows in a sample of Broad Line Radio Galaxies observed with Suzaku

    Get PDF
    We present the results of a uniform and systematic search for blue-shifted Fe K absorption lines in the X-ray spectra of five bright Broad-Line Radio Galaxies (BLRGs) observed with Suzaku. We detect, for the first time at X-rays in radio-loud AGN, several absorption lines at energies greater than 7 keV in three out of five sources, namely 3C 111, 3C 120 and 3C 390.3. The lines are detected with high significance according to both the F-test and extensive Monte Carlo simulations. Their likely interpretation as blue-shifted Fe XXV and Fe XXVI K-shell resonance lines implies an origin from highly ionized gas outflowing with mildly relativistic velocities, in the range 0.04-0.15c. A fit with specific photo-ionization models gives ionization parameters in the range log_xi~4-5.6 and column densities of N_H~10^22-10^23 cm^-2. These characteristics are very similar to those of the Ultra-Fast Outflows (UFOs) previously observed in radio-quiet AGN. Their estimated location within ~0.01-0.3pc from the central super-massive black hole suggests a likely origin related with accretion disk winds/outflows. Depending on the absorber covering fraction, the mass outflow rate of these UFOs can be comparable to the accretion rate and their kinetic power can correspond to a significant fraction of the bolometric luminosity and is comparable to their typical jet power. Therefore, these UFOs can play a significant role in the expected feedback from the AGN on the surrounding environment and can give us further clues on the relation between the accretion disk and the formation of winds/jets in both radio-quiet and radio-loud AGN.Comment: Accepted for publication in The Astrophysical Journal; corrected reference

    Generating continuous variable quantum codewords in the near-field atomic lithography

    Full text link
    Recently, D. Gottesman et al. [Phys. Rev. A 64, 012310 (2001)] showed how to encode a qubit into a continuous variable quantum system. This encoding was realized by using non-normalizable quantum codewords, which therefore can only be approximated in any real physical setup. Here we show how a neutral atom, falling through an optical cavity and interacting with a single mode of the intracavity electromagnetic field, can be used to safely encode a qubit into its external degrees of freedom. In fact, the localization induced by a homodyne detection of the cavity field is able to project the near-field atomic motional state into an approximate quantum codeword. The performance of this encoding process is then analyzed by evaluating the intrinsic errors induced in the recovery process by the approximated form of the generated codeword.Comment: 9 pages, 5 figure

    Interference effects in f-deformed fields

    Full text link
    We show how the introduction of an algeabric field deformation affects the interference phenomena. We also give a physical interpretation of the developed theory.Comment: 6 pages, Latex file, no figures, accepted by Physica Script

    Pulse Control of Decoherence with Population Decay

    Full text link
    The pulse control of decoherence in a qubit interacting with a quantum environment is studied with focus on a general case where decoherence is induced by both pure dephasing and population decay. To observe how the decoherence is suppressed by periodic pi pulses, we present a simple method to calculate the time evolution of a qubit under arbitrary pulse sequences consisting of bit-flips and/or phase-flips. We examine the effectiveness of the two typical sequences: bb sequence consisting of only bit-flips, and bp sequence consisting of both bit- and phase-flips. It is shown that the effectiveness of the pulse sequences depends on a relative strength of the two decoherence processes especially when a pulse interval is slightly shorter than qubit-environment correlation times. In the short-interval limit, however, the bp sequence is always more effective than, or at least as effective as, the bb sequence.Comment: 11 pages, 7 figure

    Electrochemical Characterization of Charge Storage at Anodes for Sodium-Ion Batteries Based on Corncob Waste-Derived Hard Carbon and Binder

    Get PDF
    Sodium-ion batteries (SIBs) represent a potential alternative to lithium-ion batteries in large-scale energy storage applications. To improve the sustainability of SIBs, the utilization of anode carbonaceous materials produced from biomass and the selection of a bio-based binder allowing an aqueous electrode processing are fundamental. Herein, corncobs are used as raw material for the preparation of hard carbon and it is also used as cellulose sources for the synthesis of carboxymethyl cellulose (CMC) binder. The corncob-derived electrodes deliver a high discharge capacity of around 264 mAhg(-1) at 1 C (300 mAg(-1)), with promising capacity retention (84 % after 100 cycles) and good rate capability. Additionally, this work expands the fundamental insight of the sodium storage behavior of Hard Carbons through an electrochemical approach, suggesting that the reaction mechanism is controlled by capacitive process in the sloping voltage region, while the diffusion-controlled intercalation is the predominant process in the low-voltage plateau
    • …
    corecore