30 research outputs found

    CLN3 loss disturbs membrane microdomain properties and protein transport in brain endothelial cells

    Get PDF
    Juvenile neuronal ceroid lipofuscinosis (JNCL) is a fatal childhood-onset neurodegenerative disorder caused by mutations in ceroid lipofuscinosis neuronal-3 (CLN3), a hydrophobic transmembrane protein of unresolved function. Previous studies indicate blood–brain barrier (BBB) defects in JNCL, and our earlier report showed prominent Cln3 expression in mouse brain endothelium. Here we find that CLN3 is necessary for normal trafficking of the microdomain-associated proteins caveolin-1, syntaxin-6, and multidrug resistance protein 1 (MDR1) in brain endothelial cells. Correspondingly, CLN3-null cells have reduced caveolae, and impaired caveolae- and MDR1-related functions including endocytosis, drug efflux, and cell volume regulation. We also detected an abnormal blood–brain barrier response to osmotic stress in vivo. Evaluation of the plasma membrane with fluorescent sphingolipid probes suggests

    WO3/BiVO4: impact of charge separation at the timescale of water oxidation

    Get PDF
    The four hole oxidation of water has long been considered the kinetic bottleneck for overall solar-driven water splitting, and thus requires the formation of long-lived photogenerated holes to overcome this kinetic barrier. However, photogenerated charges are prone to recombination unless they can be spatially separated. This can be achieved by coupling materials with staggered conduction and valence band positions, providing a thermodynamic driving force for charge separation. This has most aptly been demonstrated in the WO3/BiVO4 junction, in which quantum efficiencies for the water oxidation reaction can approach near unity. However, the charge carrier dynamics in this system remain elusive over timescales relevant to water oxidation (ÎŒs–s). In this work, the effect of charge separation on carrier lifetime, and the voltage dependence of this process, is probed using transient absorption spectroscopy and transient photocurrent measurements, revealing sub-ÎŒs electron transfer from BiVO4 to WO3. The interface formed between BiVO4 and WO3 is shown to overcome the “dead-layer effect” encountered in BiVO4 alone. Moreover, our study sheds light on the role of the WO3/BiVO4 junction in enhancing the efficiency of the water oxidation reaction, where charge separation across the WO3/BiVO4 junction improves both the yield and lifetime of holes present in the BiVO4 layer over timescales relevant to water oxidation

    WO3/BiVO4: impact of charge separation at the timescale of water oxidation

    Get PDF
    The four hole oxidation of water has long been considered the kinetic bottleneck for overall solar-driven water splitting, and thus requires the formation of long-lived photogenerated holes to overcome this kinetic barrier. However, photogenerated charges are prone to recombination unless they can be spatially separated. This can be achieved by coupling materials with staggered conduction and valence band positions, providing a thermodynamic driving force for charge separation. This has most aptly been demonstrated in the WO3/BiVO4 junction, in which quantum efficiencies for the water oxidation reaction can approach near unity. However, the charge carrier dynamics in this system remain elusive over timescales relevant to water oxidation (ÎŒs–s). In this work, the effect of charge separation on carrier lifetime, and the voltage dependence of this process, is probed using transient absorption spectroscopy and transient photocurrent measurements, revealing sub-ÎŒs electron transfer from BiVO4 to WO3. The interface formed between BiVO4 and WO3 is shown to overcome the “dead-layer effect” encountered in BiVO4 alone. Moreover, our study sheds light on the role of the WO3/BiVO4 junction in enhancing the efficiency of the water oxidation reaction, where charge separation across the WO3/BiVO4 junction improves both the yield and lifetime of holes present in the BiVO4 layer over timescales relevant to water oxidation

    A ternary PEDOT-TiO2-reduced graphene oxide nanocomposite for supercapacitor applications

    Get PDF
    A ternary composite of PEDOT was prepared with TiO2 via emulsion polymerization method adjusting various weight ratios of TiO2 to PEDOT and synthesized rGO was then blended with this composite. The FTIR, UV–Vis and XRD analysis displayed characteristic features of PEDOT and TiO2. The morphology of the nano-hybrid structure was additionally investigated by SEM analysis. Pore size and surface area analysis of particles were characterized by BET method. The electrochemical analysis showed that the specific capacitance (Csp) for PEDOT-TiO2-15-rGO was 18.9 F.cm-2 at 0.1 mA g-1 current density

    Proteomic mapping of differentially vulnerable pre-synaptic populations identifies regulators of neuronal stability in vivo.

    Get PDF
    Synapses are an early pathological target in many neurodegenerative diseases ranging from well-known adult onset conditions such as Alzheimer and Parkinson disease to neurodegenerative conditions of childhood such as spinal muscular atrophy (SMA) and neuronal ceroid lipofuscinosis (NCLs). However, the reasons why synapses are particularly vulnerable to such a broad range of neurodegeneration inducing stimuli remains unknown. To identify molecular modulators of synaptic stability and degeneration, we have used the Cln3-/- 33 mouse model of a juvenile form of NCL. We profiled and compared the molecular composition of anatomically-distinct, differentially-affected pre-synaptic populations from the Cln3-/- 35 mouse brain using proteomics followed by bioinformatic analyses. Identified protein candidates were then tested using a Drosophila CLN3 model to study their ability to modify the CLN3-neurodegenerative phenotype in vivo. We identified differential perturbations in a range of molecular cascades correlating with synaptic vulnerability, including valine catabolism and rho signalling pathways. Genetic and pharmacological targeting of key ‘hub’ proteins in such pathways was sufficient to modulate phenotypic presentation in a Drosophila CLN3 model. We propose that such a workflow provides a target rich method for the identification of novel disease regulators which could be applicable to the study of other conditions where appropriate models exist

    CLN3 Deficient Cells Display Defects in the ARF1-Cdc42 Pathway and Actin-Dependent Events

    No full text
    <div><p>Juvenile Batten disease (juvenile neuronal ceroid lipofuscinosis, JNCL) is a devastating neurodegenerative disease caused by mutations in CLN3, a protein of undefined function. Cell lines derived from patients or mice with CLN3 deficiency have impairments in actin-regulated processes such as endocytosis, autophagy, vesicular trafficking, and cell migration. Here we demonstrate the small GTPase Cdc42 is misregulated in the absence of CLN3, and thus may be a common link to multiple cellular defects. We discover that active Cdc42 (Cdc42-GTP) is elevated in endothelial cells from CLN3 deficient mouse brain, and correlates with enhanced PAK-1 phosphorylation, LIMK membrane recruitment, and altered actin-driven events. We also demonstrate dramatically reduced plasma membrane recruitment of the Cdc42 GTPase activating protein, ARHGAP21. In line with this, GTP-loaded ARF1, an effector of ARHGAP21 recruitment, is depressed. Together these data implicate misregulated ARF1-Cdc42 signaling as a central defect in JNCL cells, which in-turn impairs various cell functions. Furthermore our findings support concerted action of ARF1, ARHGAP21, and Cdc42 to regulate fluid phase endocytosis in mammalian cells. The ARF1-Cdc42 pathway presents a promising new avenue for JNCL therapeutic development.</p></div

    Reinstating Aberrant mTORC1 Activity in Huntington’s Disease Mice Improves Disease Phenotypes

    Get PDF
    Huntington's disease (HD) is caused by a polyglutamine tract expansion in huntingtin (HTT). Despite HTTs ubiquitous expression, there is early and robust vulnerability in striatum, the cause of which is poorly understood. Here, we provide evidence that impaired striatal mTORC1 activity underlies varied metabolic and degenerative phenotypes in HD brain and show that introducing the constitutively active form of the mTORC1 regulator, Rheb, into HD mouse brain, alleviates mitochondrial dysfunction, aberrant cholesterol homeostasis, striatal atrophy, impaired dopamine signaling, and increases autophagy. We also find that the expression of Rhes, a striatum-enriched mTOR activator, is reduced in HD patient and mouse brain and that exogenous addition of Rhes alleviates motor deficits and improves brain pathology in HD mice. Our combined work indicates that impaired Rhes/mTORC1 activity in HD brain may underlie the notable striatal susceptibility and thus presents a promising therapeutic target for HD therapy

    Fluid-phase endocytosis is impaired in CLN3-null MBECs.

    No full text
    <p>Primary (A) and immortalized (B) MBECs of the indicated genotypes were incubated with Hoechst 33342 to label cell nuclei (<i>blue</i>) followed by incubation in Alexa 488 conjugated dextran (<i>green</i>). A488-Dextran uptake was evaluated by fluorescence microscopy and intensity quantified using ImageJ. Data are the mean of three independent experiments. Error bars ± s.e.m. (t-test, *, p<0.05, ***, p<0.001). Scale bars are 10 ”m (A) and 20 ”m (B).</p

    ARF1-GTP is reduced in CLN3-null MBECs.

    No full text
    <p>(A) ARF1-GTP levels were quantified in <i>Cln3</i><sup>R</sup> and <i>Cln3</i><sup>−/−</sup> MBEC lysates. (B) Total ARF1 protein levels were quantified in <i>Cln3</i><sup>R</sup> and <i>Cln3</i><sup>−/−</sup> MBEC lysates by western blot, expressed as band intensity normalized to the actin loading control. Data represent the mean of (A) five and (B) three independent experiments. Error bars ± s.e.m. (t-test, *, p<0.05, n.s. =  not significant).</p
    corecore