68 research outputs found

    Time-evolving acoustic propagation modeling in a complex ocean environment

    Get PDF
    During naval operations, sonar performance estimates often need to be computed in-situ with limited environmental information. This calls for the use of fast acoustic propagation models. Many naval operations are carried out in challenging and dynamic environments. This makes acoustic propagation and sonar performance behavior particularly complex and variable, and complicates prediction. Using data from a field experiment, we have investigated the accuracy with which acoustic propagation loss (PL) can be predicted, using only limited modeling capabilities. Environmental input parameters came from various sources that may be available in a typical naval operation. The outer continental shelf shallow-water experimental area featured internal tides, packets of nonlinear internal waves, and a meandering water mass front. For a moored source/receiver pair separated by 19.6 km, the acoustic propagation loss for 800 Hz pulses was computed using the peak amplitude. The variations in sound speed translated into considerable PL variability of order 15 dB. Acoustic loss modeling was carried out using a data-driven regional ocean model as well as measured sound speed profile data for comparison. The acoustic model used a two-dimensional parabolic approximation (vertical and radial outward wavenumbers only). The variance of modeled propagation loss was less than that measured. The effect of the internal tides and sub-tidal features was reasonably well modeled; these made use of measured sound speed data. The effects of nonlinear waves were not well modeled, consistent with their known three-dimensional effects but also with the lack of measurements to initialize and constrain them.Netherlands. Ministry of DefenceUnited States. Office of Naval Research (Grant N00014-12-1-0944 (ONR6.2))United States. Office of Naval Research (Grant N00014-08-1-1097 (ONR6.1))United States. Office of Naval Research (Grant N00014-08-1-0680 (PLUS-SEAS)

    Proteomic markers with prognostic impact on outcome of chronic lymphocytic leukemia patients under chemo-immunotherapy: results from the HOVON 109 study

    Get PDF
    Despite recent identification of several prognostic markers, there is still a need for new prognostic parameters able to predict clinical outcome in chronic lymphocytic leukemia (CLL) patients. Here, we aimed to validate the prognostic ability of known (proteomic) markers measured pretreatment and to search for new proteomic markers that might be related to treatment response in CLL. To this end, baseline serum samples of 51 CLL patients treated with chemo-immunotherapy were analyzed for 360 proteomic markers, using Olink technology. Median event-free survival (EFS) was 23 months (range: 1.25–60.9). Patients with high levels of sCD23 (>11.27, p = 0.026), sCD27 (>11.03, p = 0.04), SPINT1 (>1.6, p = 0.001), and LY9 (>8.22, p = 0.0003) had a shorter EFS than those with marker levels below the median. The effect of sCD23 on EFS differed between immunoglobulin heavy chain variable gene-mutated and unmutated patients, with the shortest EFS for unmutated CLL patients with sCD23 levels above the median. Taken together, our results validate the prognostic impact of sCD23 and highlight SPINT1 and LY9 as possible promising markers for treatment response in CLL patients

    Consensus Paper: Cerebellum and Social Cognition.

    Get PDF
    The traditional view on the cerebellum is that it controls motor behavior. Although recent work has revealed that the cerebellum supports also nonmotor functions such as cognition and affect, only during the last 5 years it has become evident that the cerebellum also plays an important social role. This role is evident in social cognition based on interpreting goal-directed actions through the movements of individuals (social "mirroring") which is very close to its original role in motor learning, as well as in social understanding of other individuals' mental state, such as their intentions, beliefs, past behaviors, future aspirations, and personality traits (social "mentalizing"). Most of this mentalizing role is supported by the posterior cerebellum (e.g., Crus I and II). The most dominant hypothesis is that the cerebellum assists in learning and understanding social action sequences, and so facilitates social cognition by supporting optimal predictions about imminent or future social interaction and cooperation. This consensus paper brings together experts from different fields to discuss recent efforts in understanding the role of the cerebellum in social cognition, and the understanding of social behaviors and mental states by others, its effect on clinical impairments such as cerebellar ataxia and autism spectrum disorder, and how the cerebellum can become a potential target for noninvasive brain stimulation as a therapeutic intervention. We report on the most recent empirical findings and techniques for understanding and manipulating cerebellar circuits in humans. Cerebellar circuitry appears now as a key structure to elucidate social interactions

    Erratum to: 36th International Symposium on Intensive Care and Emergency Medicine

    Get PDF
    [This corrects the article DOI: 10.1186/s13054-016-1208-6.]

    Guidance for the treatment and prevention of obstetric-associated venous thromboembolism

    Get PDF

    The Thermohaline Circulation

    No full text

    On the physics of the Atlantic multidecadal oscillation

    No full text
    The Atlantic Multidecadal Oscillation (AMO) is a pronounced signal of climate variability in the North Atlantic sea-surface temperature field. In this paper, we propose an explanation of the physical processes responsible for the timescale and the spatial pattern of the AMO. Our approach involves the analysis of solutions of a hierarchy of models. In the lowest member of the model hierarchy, which is an ocean-only model for flow in an idealized basin, the variability shows up as a multidecadal oscillatory mode which is able to destabilize the mean thermohaline circulation. In the highest member of the model hierarchy, which is the Geophysical Fluid Dynamics Laboratory R30 climate model, multidecadal variability is found as a dominant statistical mode of variability. The connection between both results is established by tracing the spatial and temporal expression of the multidecadal mode through the model hierarchy while monitoring changes in specific quantities (mechanistic indicators) associated with its physics. The proposed explanation of the properties of the AMO is eventually based on the changes in the spatial patterns of variability through the model hierarchy

    Frequency- or amplitude-dependent effects of the Atlantic meridional overturning on the tropical Pacific Ocean

    No full text
    Using the ECHAM5/MPI-OM model, we study the relation between the variations in the Atlantic meridional overturning circulation (AMOC) and both the Pacific sea surface temperature (SST) and the El Niño-Southern Oscillation (ENSO) amplitude. In a 17-member 20C3M/SRES-A1b ensemble for 1950–2100 the Pacific response to AMOC variations on different time scales and amplitudes is considered. The Pacific response to AMOC variations associated with the Atlantic Multidecadal Oscillation (AMO) is very small. In a 5-member hosing ensemble where the AMOC collapses due to a large freshwater anomaly, the Pacific SST response is large and in agreement with previous work. Our results show that the modelled connection between AMOC and ENSO depends very strongly on the frequency and/or the modelled amplitude of the AMOC variations. Interannual AMOC variations, decadal AMOC variations and an AMOC collapse lead to entirely different responses in the Pacific Ocean
    corecore