298 research outputs found

    On the effects of exothermicity and endothermicity upon the temperature fields in a partially-filled porous channel

    Get PDF
    Forced convection of heat in a two-dimensional channel, partially filled by a porous insert is considered. This system is assumed under fully developed conditions and constant wall heat flux. Further, the fluid and solid phases can feature internal heat generation (exothermicity) and consumption (endothermicity). Analytical solutions are developed for the solid and fluid temperature fields by applying local thermal non-equilibrium (LTNE) conditions and the Darcy-Brinkman model of momentum transport. Two existing interface models (Models A and B) are employed to describe the thermal boundary conditions at the porous-fluid interface. The developed solutions for the temperature fields are compared to those found by applying the local thermal equilibrium (LTE) assumption and, therefore, the validity of the LTE is examined. This is done for a wide range of pertinent parameters including Biot number, conductivity ratio, Darcy number and thickness of the porous insert. It is found that the thermal behaviour of the investigated partially filled system is influenced by the heat sources in both solid and fluid phase. It is further shown that the LTE approach remains an acceptable assumption only for some specific regions of the parametric space. Furthermore, the occurrence of temperature gradient bifurcation on the surface of the porous-fluid interface is examined. It is demonstrated that this effect is highly sensitive to the intensity of the energy sources

    Results of a novel screening tool measuring dietary sodium knowledge in patients with chronic kidney disease.

    Get PDF
    BackgroundReducing dietary sodium has potential to benefit patients with chronic kidney disease (CKD). Little research is available defining dietary sodium knowledge gaps in patients with pre-dialysis CKD. We designed a brief screening tool to rapidly identify patient knowledge gaps related to dietary sodium for patients with CKD not yet on dialysis.MethodsA Short Sodium Knowledge Survey (SSKS) was developed and administered to patients with pre-dialysis CKD. We also asked patients if they received counseling on dietary sodium reduction and about recommended intake limits. We performed logistic regression to examine the association between sodium knowledge and patient characteristics. Characteristics of patients who answered all SSKS questions correctly were compared to those who did not.ResultsOne-hundred fifty-five patients were surveyed. The mean (SD) age was 56.6 (15.1) years, 84 (54%) were men, and 119 (77%) were white. Sixty-seven patients (43.2%) correctly identified their daily intake sodium limit. Fifty-eight (37.4%) were unable to answer all survey questions correctly. In analysis adjusted for age, sex, race, education, health literacy, CKD stage, self-reported hypertension and attendance in a kidney education class, women and patients of non-white race had lower odds of correctly answering survey questions (0.36 [0.16,0.81]; p = 0.01 women versus men and 0.33 [0.14,0.76]; p = 0.01 non-white versus white, respectively).ConclusionsOur survey provides a mechanism to quickly identify dietary sodium knowledge gaps in patients with CKD. Women and patients of non-white race may have knowledge barriers impeding adherence to sodium reduction advice

    Time-dependent density-matrix functional theory for biexcitonic phenomena

    Get PDF
    We formulate a time-dependent density-matrix functional theory (TDDMFT) approach for higher-order correlation effects like biexcitons in optical processes in solids based on the reduced two-particle density-matrix formalism within the normal orbital representation. A TDDMFT version of the Schr\"odinger equation for biexcitons in terms of one- and two-body reduced density matrices is derived, which leads to finite biexcitonic binding energies already with an adiabatic approximation. Biexcitonic binding energies for several bulk semiconductors are calculated using a contact biexciton model

    BMPR-II deficiency elicits pro-proliferative and anti-apoptotic responses through the activation of TGFbeta-TAK1-MAPK pathways in PAH

    Get PDF
    Pulmonary arterial hypertension (PAH) is a cardiovascular disorder associated with enhanced proliferation and suppressed apoptosis of pulmonary arterial smooth muscle cells (PASMCs). Heterozygous mutations in the type II receptor for bone morphogenetic protein (BMPR2) underlie the majority of the inherited and familial forms of PAH. The transforming growth factor beta (TGFbeta) pathway is activated in both human and experimental models of PAH. However, how these factors exert pro-proliferative and anti-apoptotic responses in PAH remains unclear. Using mouse primary PASMCs derived from knock-in mice, we demonstrated that BMPR-II dysfunction promotes the activation of small mothers against decapentaplegia-independent mitogen-activated protein kinase (MAPK) pathways via TGFbeta-associated kinase 1 (TAK1), resulting in a pro-proliferative and anti-apoptotic response. Inhibition of the TAK1-MAPK axis rescues abnormal proliferation and apoptosis in these cells. In both hypoxia and monocrotaline-induced PAH rat models, which display reduced levels of bmpr2 transcripts, this study further indicates that the TGFbeta-MAPK axis is activated in lungs following elevation of both expression and phosphorylation of the TAK1 protein. In ex vivo cell-based assays, TAK1 inhibits BMP-responsive reporter activity and interacts with BMPR-II receptor. In the presence of pathogenic BMPR2 mutations observed in PAH patients, this interaction is greatly reduced. Taken together, these data suggest dysfunctional BMPR-II responsiveness intensifies TGFbeta-TAK1-MAPK signalling and thus alters the ratio of apoptosis to proliferation. This axis may be a potential therapeutic target in PAH

    BMPRII deficiency impairs apoptosis via the BMPRII-ALK1-BclX-mediated pathway in pulmonary arterial hypertension (PAH)

    Get PDF
    YesPulmonary Arterial Hypertension (PAH) is a devastating cardiovascular disorder characterised by the remodelling of pre-capillary pulmonary arteries. The vascular remodelling observed in PAH patients results from excessive proliferation and apoptosis resistance of pulmonary arterial smooth muscle (PASMCs) and endothelial cells (PAECs). We have previously demonstrated that mutations in the type II receptor for bone morphogenetic protein (BMPRII) underlie the majority of the familial and inherited forms of the disease. We have further demonstrated that BMPRII deficiency promotes excessive proliferation and attenuates apoptosis in PASMCs, but the underlying mechanisms remain unclear. The major objective of this study is to investigate how BMPRII deficiency impairs apoptosis in PAH. Using multidisciplinary approaches, we demonstrate that deficiency in the expression of BMPRII impairs apoptosis by modulating the alternative splicing of the apoptotic regulator, Bcl-x (B-cell lymphoma X) transcripts: a finding observed in circulating leukocytes and lungs of PAH subjects, hypoxia-induced PAH rat lungs as well as in PASMCs and PAECs. BMPRII deficiency elicits cell specific effects: promoting the expression of Bcl-xL transcripts in PASMCs whilst inhibiting it in ECs, thus exerting differential apoptotic effects in these cells. The pro-survival effect of BMPRII receptor is mediated through the activin receptor like kinase 1 (ALK1) but not the ALK3 receptor. Finally, we show that BMPRII interacts with the ALK1 receptor and pathogenic mutations in the BMPR2 gene abolish this interaction. Taken together, dysfunctional BMPRII responsiveness impairs apoptosis via the BMPRII-ALK1-Bcl-xL pathway in PAH. We suggest Bcl-xL as a potential biomarker and druggable target.This work was supported by a fellowship (awarded to MTN) from the Department of Health via the NIHR Comprehensive Biomedical Research Centre award to Guy’s & St Thomas’ NHS Foundation Trust in partnership with King’s College London, Heptagon Life Science Proof of Concept Fund (grant KCL24 to MTN), the Great Britain Sasakawa Foundation (grant B70 to MTN), the Royal Society (grant 43049 to MTN), the Medical Research Council (grant G900865 to RCT, MTN and NWM) and the University of Bradford (grants 003200, 66006/001NAS and DH005 to MTN). NS and MYB were supported by scholarships from the Commonwealth Scholarship Commission, UK and Scientific and Technological Research Council of Turkey (TUBITAK), respectively

    Is There a Processing Preference for Object Relative Clauses in Chinese? Evidence From ERPs

    Get PDF
    A consistent finding across head-initial languages, such as English, is that subject relative clauses (SRCs) are easier to comprehend than object relative clauses (ORCs). However, several studies in Mandarin Chinese, a head-final language, revealed the opposite pattern, which might be modulated by working memory (WM) as suggested by recent results from self-paced reading performance. In the present study, event-related potentials (ERPs) were recorded when participants with high and low WM spans (measured by forward digit span and operation span tests) read Chinese ORCs and SRCs. The results revealed an N400-P600 complex elicited by ORCs on the relativizer, whose magnitude was modulated by the WM span. On the other hand, a P600 effect was elicited by SRCs on the head noun, whose magnitude was not affected by the WM span. These findings paint a complex picture of relative clause processing in Chinese such that opposing factors involving structural ambiguities and integration of filler-gap dependencies influence processing dynamics in Chinese relative clauses

    Ab initio Calculations of Multilayer Relaxations of Stepped Cu Surfaces

    Full text link
    We present trends in the multilayer relaxations of several vicinals of Cu(100) and Cu(111) of varying terrace widths and geometry. The electronic structure calculations are based on density functional theory in the local density approximation with norm-conserving, non-local pseudopotentials in the mixed basis representation. While relaxations continue for several layers, the major effect concentrates near the step and corner atoms. On all surfaces the step atoms contract inwards, in agreement with experimental findings. Additionally, the corner atoms move outwards and the atoms in the adjacent chain undergo large inward relaxation. Correspondingly, the largest contraction (4%) is in the bond length between the step atom and its bulk nearest neighbor (BNN), while that between the corner atom and BNN is somewhat enlarged. The surface atoms also display changes in registry of upto 1.5%. Our results are in general in good agreement with LEED data including the controversial case of Cu(511). Subtle differences are found with results obtained from semi-empirical potentials.Comment: 21 pages and 3 figure

    Reply

    Get PDF
    Refers to: Koushik Tripathy, Re: Niederer et al.: Predictors of long-term visual outcome, in: intermediate uveitis (Ophthalmology. 2017;124:393-398) Ophthalmology, Volume 124, Issue 7, July 2017, Pages e59. https://doi.org/10.1016/j.ophtha.2017.02.01

    Effective elastic properties of a van der Waals molecular monolayer at a metal surface

    Get PDF
    Adsorbing anthracene on a Cu(111) surface results in a wide range of complex and intriguing superstructures spanning a coverage range from 1 per 17 to 1 per 15 substrate atoms. In accompanying first-principles density-functional theory calculations we show the essential role of van der Waals interactions in estimating the variation in anthracene adsorption energy and height across the sample. We can thereby evaluate the compression of the anthracene film in terms of continuum elastic properties, which results in an effective Young\u27s modulus of 1.5 GPa and a Poisson ratio approximate to 0.1. These values suggest interpretation of the molecular monolayer as a porous material-in marked congruence with our microscopic observations

    Vibrational dynamics of a c(2x2) phase induced by nitrogen adsorption on Cu(001)

    Get PDF
    Helium-atom scattering and density-functional perturbation theory (DFPT) calculations invoking the linear-response approximation and the pseudopotential approach have been used to study the vibrational dynamics of c(2x2)-like phases produced by nitrogen-ion implantation and subsequent annealing of Cu(001) surfaces. We find that, while the c(2x2) phonon dispersion relations are different from those of clean Cu(001), neither the acoustic nor the optical surface phonon mode energies measured along both [100] and [110] directions are dependent on N coverage once the c(2x2) pattern is formed. We show that the dispersion of the surface phonon modes is well reproduced with an analysis of the DFPT calculations of a nonstress relieved c(2x2) structure. A marked softening of a zone center optical mode is very apparent both experimentally and in the calculations. We show this softening arises largely because of interplanar Cu surface relaxations induced by N adsorption
    corecore