705 research outputs found

    Lung macrophage scavenger receptor SR-A6 (MARCO) is an adenovirus type-specific virus entry receptor

    Get PDF
    <div><p>Macrophages are a diverse group of phagocytic cells acting in host protection against stress, injury, and pathogens. Here, we show that the scavenger receptor SR-A6 is an entry receptor for human adenoviruses in murine alveolar macrophage-like MPI cells, and important for production of type I interferon. Scavenger receptors contribute to the clearance of endogenous proteins, lipoproteins and pathogens. Knockout of SR-A6 in MPI cells, anti-SR-A6 antibody or the soluble extracellular SR-A6 domain reduced adenovirus type-C5 (HAdV-C5) binding and transduction. Expression of murine SR-A6, and to a lower extent human SR-A6 boosted virion binding to human cells and transduction. Virion clustering by soluble SR-A6 and proximity localization with SR-A6 on MPI cells suggested direct adenovirus interaction with SR-A6. Deletion of the negatively charged hypervariable region 1 (HVR1) of hexon reduced HAdV-C5 binding and transduction, implying that the viral ligand for SR-A6 is hexon. SR-A6 facilitated macrophage entry of HAdV-B35 and HAdV-D26, two important vectors for transduction of hematopoietic cells and human vaccination. The study highlights the importance of scavenger receptors in innate immunity against human viruses.</p></div

    Integrative omics approaches provide biological and clinical insights : examples from mitochondrial diseases

    Get PDF
    High-throughput technologies for genomics, transcriptomics, proteomics, and metabolomics, and integrative analysis of these data, enable new, systems-level insights into disease pathogenesis. Mitochondrial diseases are an excellent target for hypothesis-generating omics approaches, as the disease group is mechanistically exceptionally complex. Although the genetic background in mitochondrial diseases is in either the nuclear or the mitochondrial genome, the typical downstream effect is dysfunction of the mitochondrial respiratory chain. However, the clinical manifestations show unprecedented variability, including either systemic or tissue-specific effects across multiple organ systems, with mild to severe symptoms, and occurring at any age. So far, the omics approaches have provided mechanistic understanding of tissue-specificity and potential treatment options for mitochondrial diseases, such as metabolome remodeling. However, no curative treatments exist, suggesting that novel approaches are needed. In this Review, we discuss omics approaches and discoveries with the potential to elucidate mechanisms of and therapies for mitochondrial diseases.Peer reviewe

    A controlled follow-up study of adolescents exposed to a school shooting - Psychological consequences after four months

    Get PDF
    Background: In November 2007, a student shot eight people and himself at Jokela High School, Finland. This study aims to evaluate the long-term effects of exposure to a school shooting among adolescents. Method: Associations between psychological outcomes and background factors were analysed and compared with "comparison students" four months after the incident. A questionnaire including Impact of Event Scale (IES) and General Health Questionnaire (GHQ-36) was used. Results: Half of the females and a third of the males suffered from posttraumatic distress. High level of posttraumatic distress (IES >= 35), predicting PTSD, was observed in 27% of the females and 7% of the males. The odds ratio was 6.4 (95% confidence interval 3.5-10.5) for having high levels of posttraumatic distress. Severe or extreme exposure and female gender were found to increase the risk. Forty-two percent of the females and 16% of the males had psychiatric disturbance (GHQ >= 9). Severe or extreme exposure, older age and female gender increased the risk. Perceived support from family and friends was found to be protective. Conclusions: The observed risk and protective factors were similar to earlier studies. Follow-up will be essential in identifying factors predicting persisting trauma-related symptoms in adolescence. (C) 2010 Elsevier Masson SAS. All rights reserved.Peer reviewe

    Genetics of decayed sexual traits in a parasitoid wasp with endosymbiont-induced asexuality.

    Get PDF
    Trait decay may occur when selective pressures shift, owing to changes in environment or life style, rendering formerly adaptive traits non-functional or even maladaptive. It remains largely unknown if such decay would stem from multiple mutations with small effects or rather involve few loci with major phenotypic effects. Here, we investigate the decay of female sexual traits, and the genetic causes thereof, in a transition from haplodiploid sexual reproduction to endosymbiont-induced asexual reproduction in the parasitoid wasp Asobara japonica. We take advantage of the fact that asexual females cured of their endosymbionts produce sons instead of daughters, and that these sons can be crossed with sexual females. By combining behavioral experiments with crosses designed to introgress alleles from the asexual into the sexual genome, we found that sexual attractiveness, mating, egg fertilization and plastic adjustment of offspring sex ratio (in response to variation in local mate competition) are decayed in asexual A. japonica females. Furthermore, introgression experiments revealed that the propensity for cured asexual females to produce only sons (because of decayed sexual attractiveness, mating behavior and/or egg fertilization) is likely caused by recessive genetic effects at a single locus. Recessive effects were also found to cause decay of plastic sex-ratio adjustment under variable levels of local mate competition. Our results suggest that few recessive mutations drive decay of female sexual traits, at least in asexual species deriving from haplodiploid sexual ancestors

    Yeast : the soul of beer’s aroma—a review of flavour-active esters and higher alcohols produced by the brewing yeast

    Get PDF
    Among the most important factors influencing beer quality is the presence of well-adjusted amounts of higher alcohols and esters. Thus, a heavy body of literature focuses on these substances and on the parameters influencing their production by the brewing yeast. Additionally, the complex metabolic pathways involved in their synthesis require special attention. More than a century of data, mainly in genetic and proteomic fields, has built up enough information to describe in detail each step in the pathway for the synthesis of higher alcohols and their esters, but there is still place for more. Higher alcohols are formed either by anabolism or catabolism (Ehrlich pathway) of amino acids. Esters are formed by enzymatic condensation of organic acids and alcohols. The current paper reviews the up-to-date knowledge in the pathways involving the synthesis of higher alcohols and esters by brewing yeasts. Fermentation parameters affecting yeast response during biosynthesis of these aromatic substances are also fully reviewed.Eduardo Pires gratefully acknowledges the Fundacao para a Ciencia e a Tecnologia (FCT, Portugal) for the PhD fellowship support (SFRH/BD/61777/2009). The financial contributions of the EU FP7 project Ecoefficient Biodegradable Composite Advanced Packaging (EcoBioCAP, grant agreement no. 265669) as well as of the Grant Agency of the Czech Republic (project GACR P503/12/1424) are also gratefully acknowledged. The authors thank the Ministry of Education, Youth and Sports of the Czech Republic (MSM 6046137305) for their financial support

    Isolation of dental stem cell-enriched populations from continuously growing mouse incisors

    Get PDF
    Continuous growth of the rodent incisor is enabled by epithelial and mesenchymal stem cells (ESCs and MSCs) which unceasingly replenish enamel and dentin, respectively, that wear by persistent animal gnawing. Lineage tracing studies have provided evidence that ESCs contribute to all epithelial lineages of the tooth in vivo. Meanwhile, in the mouse incisor, MSCs continuously contribute to odontoblast lineage and tooth growth. However, in vitro manipulation of ESCs has shown little progress, mainly due to lack of appropriate protocol to successfully isolate, culture, expand, and differentiate ESCs in vitro without using the co-culture system. In this chapter we describe the isolation of the Sox2-GFP+ cell population that is highly enriched in ESCs. Isolated cells can be used for various types of analyses, including in vitro culture, single cell-related analyses, etc. Furthermore, we describe ways to obtain populations enriched in the incisor MSCs using FACS sorting of antibody-labeled cells. Easily accessible FACS sorting enables easy and relatively fast isolation of the cells labeled by the fluorescent protein. © Springer Science+Business Media, LLC, part of Springer Nature 2019.Peer reviewe

    Surgical Management of Mandibular Odontogenic Myxoma Utilizing CAD/CAM Technology: A Case Report

    Get PDF
    Background: Odontogenic myxoma (OM) is a benign intraosseous tumour of the jaw usually treated by surgery. Computer-aided design and manufacturing (CAD/CAM) technology may optimize preoperative planning of the resection and jaw reconstruction.Case Report: A 29-year-old female was diagnosed with mandibular odontogenic myxoma. A large, benign but potentially infiltrating, and locally aggressive tumour required radical surgical treatment. CAD/CAM technology facilitated preoperative planning for block resection and immediate reconstruction of the mandible. CAD/CAM was utilized to determine the resection margins planned according to cone beam computed tomography (CBCT) data and manufacture the reconstruction plate and cutting guides.Clinical implications: CAD/CAM can be utilized to produce 3D models of OM, cutting guides, and patient-specific implants, making it a valuable tool in the management of this disease. Future investigations should study how operative times and clinical outcomes are affected by this technology.</p

    De novo serine biosynthesis is protective in mitochondrial disease

    Get PDF
    \ua9 2025 The AuthorsThe importance of serine as a metabolic regulator is well known for tumors and is also gaining attention in degenerative diseases. Recent data indicate that de novo serine biosynthesis is an integral component of the metabolic response to mitochondrial disease, but the roles of the response have remained unknown. Here, we report that glucose-driven de novo serine biosynthesis maintains metabolic homeostasis in energetic stress. Pharmacological inhibition of the rate-limiting enzyme, phosphoglycerate dehydrogenase (PHGDH), aggravated mitochondrial muscle disease, suppressed oxidative phosphorylation and mitochondrial translation, altered whole-cell lipid profiles, and enhanced the mitochondrial integrated stress response (ISRmt) in vivo in skeletal muscle and in cultured cells. Our evidence indicates that de novo serine biosynthesis is essential to maintain mitochondrial respiration, redox balance, and cellular lipid homeostasis in skeletal muscle with mitochondrial dysfunction. Our evidence implies that interventions activating de novo serine synthesis may protect against mitochondrial failure in skeletal muscle
    corecore