371 research outputs found

    Hepatitis C virus production requires apolipoprotein A-I and affects its association with nascent low-density lipoproteins

    Get PDF
    Background/aims The life cycle of hepatitis C virus (HCV) is intimately linked to the lipid metabolism of the host. In particular, HCV exploits the metabolic machinery of the lipoproteins in several steps of its life cycle such as circulation in the bloodstream, cell attachment and entry, assembly and release of viral particles. However, the details of how HCV interacts with and influences the metabolism of the host lipoproteins are not well understood. A study was undertaken to investigate whether HCV directly affects the protein composition of host circulating lipoproteins. Methods A proteomic analysis of circulating very low-, low- and high-density lipoproteins (VLDL, LDL and HDL), isolated from either in-treatment naive HCV-infected patients or healthy donors (HD), was performed using two-dimensional gel electrophoresis and tandem mass spectrometry (MALDI-TOF/TOF). The results obtained were further investigated using in vitro models of HCV infection and replication. Results A decreased level of apolipoprotein A-I (apoA-I) was found in the LDL fractions of HCV-infected patients. This result was confirmed by western blot and ELISA analysis. HCV cellular models (JFH1 HCV cell culture system (HCVcc) and HCV subgenomic replicons) showed that the decreased apoA-I/LDL association originates from hepatic biogenesis rather than lipoprotein catabolism occurring in the circulation, and is not due to a downregulation of the apoA-I protein concentration. The sole non-structural viral proteins were sufficient to impair the apoA-I/LDL association. Functional evidence was obtained for involvement of apoA-I in the viral life cycle such as RNA replication and virion production. The specific siRNA-mediated downregulation of apoA-I led to a reduction in both HCV RNA and viral particle levels in culture. Conclusions This study shows that HCV induces lipoprotein structural modification and that its replication and production are linked to the host lipoprotein metabolism, suggesting apoA-I as a new possible target for antiviral therapy

    Purification of immature neuronal cells from neural stem cell progeny

    Get PDF
    Large-scale proliferation and multi-lineage differentiation capabilities make neural stem cells (NSCs) a promising renewable source of cells for therapeutic applications. However, the practical application for neuronal cell replacement is limited by heterogeneity of NSC progeny, relatively low yield of neurons, predominance of astrocytes, poor survival of donor cells following transplantation and the potential for uncontrolled proliferation of precursor cells. To address these impediments, we have developed a method for the generation of highly enriched immature neurons from murine NSC progeny. Adaptation of the standard differentiation procedure in concert with flow cytometry selection, using scattered light and positive fluorescent light selection based on cell surface antibody binding, provided a near pure (97%) immature neuron population. Using the purified neurons, we screened a panel of growth factors and found that bone morphogenetic protein-4 (BMP-4) demonstrated a strong survival effect on the cells in vitro, and enhanced their functional maturity. This effect was maintained following transplantation into the adult mouse striatum where we observed a 2-fold increase in the survival of the implanted cells and a 3-fold increase in NeuN expression. Additionally, based on the neural-colony forming cell assay (N-CFCA), we noted a 64 fold reduction of the bona fide NSC frequency in neuronal cell population and that implanted donor cells showed no signs of excessive or uncontrolled proliferation. The ability to provide defined neural cell populations from renewable sources such as NSC may find application for cell replacement therapies in the central nervous system

    Chemical Engineering Division waste management programs. Quarterly report, January--March 1975

    Full text link
    Development work on the study of consolidation techniques for Zircaloy fuel-cladding hulls included scouting tests on volatility schemes for separating the zirconium as the volatile tetrachloride and ignition tests on several Zircaloy materials to further characterize the pyrophoric behavior of Zircaloy. All tests were with nonirradiated metal pending acquisition of irradiated samples. Installation is nearly complete of a glovebox facility for studies on the salvage of alpha-contaminated metals by pyrochemical methods. Disposal of a major portion of fission product tritium formed in light water reactor fuels by deep- well injection of the low-level aqueous waste from plants reprocessing such fuels is being evaluated. The question of siting is a very important factor in determining the feasibility of this particular disposal option. A review is given of the status of information for U. S. sedimentary basins, the areas most likely to be generally suitable for siting of waste wells. Work on the reliability of high-level-waste canisters included an examination of creep, shot- peening, and subcooling of the filler canister below storage temperatures, as methods of relieving stresses induced in canisters due to differential contraction of canister and glass during cooling. A method was investigated for relieving stresses in calcine-filled canisters. Properties of fission product oxides were examined to elucidate possible adverse corrosive effects at the canister-waste interface. (LK

    Co-Swarming and Local Collapse: Quorum Sensing Conveys Resilience to Bacterial Communities by Localizing Cheater Mutants in Pseudomonas aeruginosa

    Get PDF
    Background: Members of swarming bacterial consortia compete for nutrients but also use a co-operation mechanism called quorum sensing (QS) that relies on chemical signals as well as other secreted products (‘‘public goods’’) necessary for swarming. Deleting various genes of this machinery leads to cheater mutants impaired in various aspects of swarming cooperation. Methodology/Principal Findings: Pairwise consortia made of Pseudomonas aeruginosa, its QS mutants as well as B. cepacia cells show that a interspecies consortium can ‘‘combine the skills’ ’ of its participants so that the strains can cross together barriers that they could not cross alone. In contrast, deleterious mutants are excluded from consortia either by competition or by local population collapse. According to modeling, both scenarios are the consequence of the QS signalling mechanism itself. Conclusion/Significance: The results indirectly explain why it is an advantage for bacteria to maintain QS systems that can cross-talk among different species, and conversely, why certain QS mutants which can be abundant in isolated niches

    Function and Regulation of Vibrio campbellii Proteorhodopsin: Acquired Phototrophy in a Classical Organoheterotroph

    Get PDF
    Proteorhodopsins (PRs) are retinal-binding photoproteins that mediate light-driven proton translocation across prokaryotic cell membranes. Despite their abundance, wide distribution and contribution to the bioenergy budget of the marine photic zone, an understanding of PR function and physiological significance in situ has been hampered as the vast majority of PRs studied to date are from unculturable bacteria or culturable species that lack the tools for genetic manipulation. In this study, we describe the presence and function of a horizontally acquired PR and retinal biosynthesis gene cluster in the culturable and genetically tractable bioluminescent marine bacterium Vibrio campbellii. Pigmentation analysis, absorption spectroscopy and photoinduction assays using a heterologous over-expression system established the V. campbellii PR as a functional green light absorbing proton pump. In situ analyses comparing PR expression and function in wild type (WT) V. campbellii with an isogenic ΔpR deletion mutant revealed a marked absence of PR membrane localization, pigmentation and light-induced proton pumping in the ΔpR mutant. Comparative photoinduction assays demonstrated the distinct upregulation of pR expression in the presence of light and PR-mediated photophosphorylation in WT cells that resulted in the enhancement of cellular survival during respiratory stress. In addition, we demonstrate that the master regulator of adaptive stress response and stationary phase, RpoS1, positively regulates pR expression and PR holoprotein pigmentation. Taken together, the results demonstrate facultative phototrophy in a classical marine organoheterotrophic Vibrio species and provide a salient example of how this organism has exploited lateral gene transfer to further its adaptation to the photic zone

    Sampling, separation, and quantification of N-acyl homoserine lactones from marine intertidal sediments

    Get PDF
    N-acyl homoserine lactones (AHLs) are molecules produced by many Gram-negative bacteria as mediators of cell-cell signaling in a mechanism known as quorum sensing (QS). QS is widespread in marine bacteria regulating diverse processes, such as virulence or excretion of polymers that mediate biofilm formation. Associated eukaryotes, such as microalgae, respond to these cues as well, leading to an intricate signaling network. To date, only very few studies attempted to measure AHL concentrations in phototrophic microbial communities, which are hot spots for bacteria-bacteria as well as microalgae-bacteria interactions. AHL quantification in environmental samples is challenging and requires a robust and reproducible sampling strategy. However, knowing about AHL concentrations opens up multiple perspectives from answering fundamental ecological questions to deriving guidelines for manipulation and control of biofilms. Here, we present a method for sampling and AHL identification and quantification from marine intertidal sediments. The use of contact cores for sediment sampling ensures reproducible sample surface area and volume at each location. Flash-freezing of the samples with liquid nitrogen prevents enzymatic AHL degradation between sampling and extraction. After solvent extraction, samples were analyzed with an ultra-high performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS) method that allows to baseline-separate 16 different AHLs in less than 10 min. The sensitivity of the method is sufficient for detection and quantification of AHLs in environmental samples of less than 16 cm(3)
    corecore