2,308 research outputs found

    Considerations on the Role of Fall-Back Discs in the Final Stages of the Common Envelope Binary Interaction

    Full text link
    The common envelope interaction is thought to be the gateway to all evolved compact binaries and mergers. Hydrodynamic simulations of the common envelope interaction between giant stars and their companions are restricted to the dynamical, fast, in-spiral phase. They find that the giant envelope is lifted during this phase, but remains mostly bound to the system. At the same time, the orbital separation is greatly reduced, but in most simulations it levels off? at values larger than measured from observations. We conjectured that during the post-in-spiral phase the bound envelope gas will return to the system. Using hydrodynamic simulations, we generate initial conditions for our simulation that result in a fall-back disk with total mass and angular momentum in line with quantities from the simulations of Passy et al. We find that the simulated fall-back event reduces the orbital separation efficiently, but fails to unbind the gas before the separation levels off once again. We also find that more massive fall-back disks reduce the orbital separation more efficiently, but the efficiency of unbinding remains invariably very low. From these results we deduce that unless a further energy source contributes to unbinding the envelope (such as was recently tested by Nandez et al.), all common envelope interactions would result in mergers. On the other hand, additional energy sources are unlikely to help, on their own, to reduce the orbital separation. We conclude by discussing our dynamical fall-back event in the context of a thermally-regulated post-common envelope phase.Comment: 12 pages, 12 pages, Accepted to MNRA

    L\u27Azur: February 1966

    Get PDF
    Parents\u27 Weekend Editionhttps://spiral.lynn.edu/studentnews/1004/thumbnail.jp

    L\u27Azur: May 16, 1966

    Get PDF
    https://spiral.lynn.edu/studentnews/1005/thumbnail.jp

    L\u27Azur: May 1964

    Get PDF
    The first student newspaper published by the school.https://spiral.lynn.edu/studentnews/1000/thumbnail.jp

    L\u27Azur: December 1965

    Get PDF
    https://spiral.lynn.edu/studentnews/1003/thumbnail.jp

    L\u27Azur: February 1965

    Get PDF
    Parents\u27 Weekend Editionhttps://spiral.lynn.edu/studentnews/1001/thumbnail.jp

    L\u27Azur: June 1965

    Get PDF
    Graduation Editionhttps://spiral.lynn.edu/studentnews/1002/thumbnail.jp

    Quark deconfinement in neutron star cores: The effects of spin-down

    Full text link
    We study the role of spin-down in driving quark deconfinement in the high density core of isolated neutron stars. Assuming spin-down to be solely due to magnetic braking, we obtain typical timescales to quark deconfinement for neutron stars that are born with Keplerian frequencies. Employing different equations of state (EOS), we determine the minimum and maximum neutron star masses that will allow for deconfinement via spin-down only. We find that the time to reach deconfinement is strongly dependent on the magnetic field and that this time is least for EOS that support the largest minimum mass at zero spin, unless rotational effects on stellar structure are large. For a fiducial critical density of 5ρ05\rho_0 for the transition to the quark phase (ρ0=2.5×1014\rho_0=2.5\times10^{14}g/cm3^3 is the saturation density of nuclear matter), we find that neutron stars lighter than 1.5M1.5M_{\odot} cannot reach a deconfined phase. Depending on the EOS, neutron stars of more than 1.5M1.5M_{\odot} can enter a quark phase only if they are spinning faster than about 3 milliseconds as observed now, whereas larger spin periods imply that they are either already quark stars or will never become one.Comment: 4 pages, 4 figures, submitted to ApJ

    The role of dredge-up in double white dwarf mergers

    Get PDF
    We present the results of an investigation of the dredge-up and mixing during the merger of two white dwarfs with different chemical compositions by conducting hydrodynamic simulations of binary mergers for three representative mass ratios. In all the simulations, the total mass of the two white dwarfs is 1.0 M\lesssim1.0~{\rm M_\odot}. Mergers involving a CO and a He white dwarf have been suggested as a possible formation channel for R Coronae Borealis type stars, and we are interested in testing if such mergers lead to conditions and outcomes in agreement with observations. Even if the conditions during the merger and subsequent nucleosynthesis favor the production of 18O^{18}{\mathrm O}, the merger must avoid dredging up large amounts of 16O^{16}{\mathrm O}, or else it will be difficult to produce sufficient 18O^{18}{\mathrm O} to explain the oxygen ratio observed to be of order unity. We performed a total of 9 simulations using two different grid-based hydrodynamics codes using fixed and adaptive meshes, and one smooth particle hydrodynamics (SPH) code. We find that in most of the simulations, >102 M>10^{-2}~{\rm M_\odot} of 16O^{16}{\mathrm O} is indeed dredged up during the merger. However, in SPH simulations where the accretor is a hybrid He/CO white dwarf with a 0.1 M\sim 0.1~{\rm M_\odot} layer of helium on top, we find that no 16O^{16}{\mathrm O} is being dredged up, while in the q=0.8q=0.8 simulation <104 M<10^{-4}~{\rm M_\odot} of 16O^{16}{\mathrm O} has been brought up, making a WD binary consisting of a hybrid CO/He WD and a companion He WD an excellent candidate for the progenitor of RCB stars.Comment: Accepted for publication in Ap
    corecore