2,519 research outputs found
Considerations on the Role of Fall-Back Discs in the Final Stages of the Common Envelope Binary Interaction
The common envelope interaction is thought to be the gateway to all evolved
compact binaries and mergers. Hydrodynamic simulations of the common envelope
interaction between giant stars and their companions are restricted to the
dynamical, fast, in-spiral phase. They find that the giant envelope is lifted
during this phase, but remains mostly bound to the system. At the same time,
the orbital separation is greatly reduced, but in most simulations it levels
off? at values larger than measured from observations. We conjectured that
during the post-in-spiral phase the bound envelope gas will return to the
system. Using hydrodynamic simulations, we generate initial conditions for our
simulation that result in a fall-back disk with total mass and angular momentum
in line with quantities from the simulations of Passy et al. We find that the
simulated fall-back event reduces the orbital separation efficiently, but fails
to unbind the gas before the separation levels off once again. We also find
that more massive fall-back disks reduce the orbital separation more
efficiently, but the efficiency of unbinding remains invariably very low. From
these results we deduce that unless a further energy source contributes to
unbinding the envelope (such as was recently tested by Nandez et al.), all
common envelope interactions would result in mergers. On the other hand,
additional energy sources are unlikely to help, on their own, to reduce the
orbital separation. We conclude by discussing our dynamical fall-back event in
the context of a thermally-regulated post-common envelope phase.Comment: 12 pages, 12 pages, Accepted to MNRA
The role of dredge-up in double white dwarf mergers
We present the results of an investigation of the dredge-up and mixing during
the merger of two white dwarfs with different chemical compositions by
conducting hydrodynamic simulations of binary mergers for three representative
mass ratios. In all the simulations, the total mass of the two white dwarfs is
. Mergers involving a CO and a He white dwarf have
been suggested as a possible formation channel for R Coronae Borealis type
stars, and we are interested in testing if such mergers lead to conditions and
outcomes in agreement with observations. Even if the conditions during the
merger and subsequent nucleosynthesis favor the production of , the merger must avoid dredging up large amounts of , or
else it will be difficult to produce sufficient to explain
the oxygen ratio observed to be of order unity. We performed a total of 9
simulations using two different grid-based hydrodynamics codes using fixed and
adaptive meshes, and one smooth particle hydrodynamics (SPH) code. We find that
in most of the simulations, of is
indeed dredged up during the merger. However, in SPH simulations where the
accretor is a hybrid He/CO white dwarf with a layer of
helium on top, we find that no is being dredged up, while in
the simulation of has been
brought up, making a WD binary consisting of a hybrid CO/He WD and a companion
He WD an excellent candidate for the progenitor of RCB stars.Comment: Accepted for publication in Ap
Quark deconfinement in neutron star cores: The effects of spin-down
We study the role of spin-down in driving quark deconfinement in the high
density core of isolated neutron stars. Assuming spin-down to be solely due to
magnetic braking, we obtain typical timescales to quark deconfinement for
neutron stars that are born with Keplerian frequencies. Employing different
equations of state (EOS), we determine the minimum and maximum neutron star
masses that will allow for deconfinement via spin-down only. We find that the
time to reach deconfinement is strongly dependent on the magnetic field and
that this time is least for EOS that support the largest minimum mass at zero
spin, unless rotational effects on stellar structure are large. For a fiducial
critical density of for the transition to the quark phase
(g/cm is the saturation density of nuclear
matter), we find that neutron stars lighter than cannot reach a
deconfined phase. Depending on the EOS, neutron stars of more than
can enter a quark phase only if they are spinning faster than
about 3 milliseconds as observed now, whereas larger spin periods imply that
they are either already quark stars or will never become one.Comment: 4 pages, 4 figures, submitted to ApJ
Risk factors associated with early smoking onset in two large birth cohorts.
We use prospective data from the ongoing British Cohort Study (BCS) and Millennium Cohort Study (MCS) to: 1) document changes in the prevalence of childhood smoking onset; 2) assess whether broad historic shifts in key risk factors, such as maternal education, parental smoking, and peer childhood smoking, explain observed cohort changes in childhood smoking; and 3) evaluate whether inequalities in onset have narrowed or widened during this period. The children in these two studies were born 31 years apart (i.e., BCS in 1970; MCS in 2001), and were followed from infancy through early adolescence (n = 23,506 children). Our outcome variable is child self-reports of smoking (ages 10, 11). Early life risk factors were assessed via parent reports in infancy and age 5. Findings reveal that the odds of childhood smoking were over 12 times greater among children born in 1970 versus 2001. The decline in childhood smoking by cohort was partly explained by increases in maternal education, decreases in mothers' and fathers' smoking, and declines in the number of children whose friends smoked. Results also show that childhood smoking is now more linked to early life disadvantages, as MCS children were especially likely to smoke if their mother had low education or used cigarettes, or if the child had a friend who smoked. Although the prevalence of child and adult smoking has dropped dramatically in the past three decades, policy efforts should focus on the increased social inequality resulting from the concentration of early life cigarette use among disadvantaged children
Effects of Circulating and Local Uteroplacental Angiotensin II in Rat Pregnancy.
The renin-angiotensin (Ang) system is important during placental development. Dysregulation of the renin-Ang system is important in preeclampsia (PE). Female rats transgenic for the human angiotensinogen gene crossed with males transgenic for the human renin gene develop the PE syndrome, whereas those of the opposite cross do not. We used this model to study the role of Ang II in trophoblast invasion, which is shallow in human PE but deeper in this model. We investigated the following groups: PE rats, opposite-cross rats, Ang II–infused rats (1000 ng/kg per day), and control rats. Ang II infusion increased only circulating Ang II levels (267.82 pg/mL), opposite cross influenced only uteroplacental Ang II (13.52 fmol/mg of protein), and PE increased both circulating (251.09 pg/mL) and uteroplacental (19.24 fmol/mg of protein) Ang II. Blood pressure and albuminuria occurred in the models with high circulating Ang II but not in the other models. Trophoblast invasion increased in PE and opposite-cross rats but not in Ang II–infused rats. Correspondingly, uterine artery resistance index increased in Ang II–infused rats but decreased in PE rats. We then studied human trophoblasts and villous explants from first-trimester pregnancies with time-lapse microscopy. Local Ang II dose-dependently increased migration by 75%, invasion by 58%, and motility by 282%. The data suggest that local tissue Ang II stimulates trophoblast invasion in vivo in the rat and in vitro in human cells, a hitherto fore unrecognized function. Conceivably, upregulation of tissue Ang II in the maternal part of the placenta represents an important growth factor for trophoblast invasion and migration
Do R Coronae Borealis Stars Form from Double White Dwarf Mergers?
A leading formation scenario for R Coronae Borealis (RCB) stars invokes the
merger of degenerate He and CO white dwarfs (WD) in a binary. The observed
ratio of 16O/18O for RCB stars is in the range of 0.3-20 much smaller than the
solar value of ~500. In this paper, we investigate whether such a low ratio can
be obtained in simulations of the merger of a CO and a He white dwarf. We
present the results of five 3-dimensional hydrodynamic simulations of the
merger of a double white dwarf system where the total mass is 0.9 Mdot and the
initial mass ratio (q) varies between 0.5 and 0.99. We identify in simulations
with a feature around the merged stars where the temperatures
and densities are suitable for forming 18O. However, more 16O is being
dredged-up from the C- and O-rich accretor during the merger than the amount of
18O that is produced. Therefore, on a dynamical time scale over which our
hydrodynamics simulation runs, a 16O/18O ratio of ~2000 in the "best" case is
found. If the conditions found in the hydrodynamic simulations persist for 10^6
seconds the oxygen ratio drops to 16 in one case studied, while in a hundred
years it drops to ~4 in another case studied, consistent with the observed
values in RCB stars. Therefore, the merger of two white dwarfs remains a strong
candidate for the formation of these enigmatic stars.Comment: 42 pages, 19 figures. Accepted for publication in the Astrophysical
Journa
IntCal09 and Marine09 radiocarbon age calibration curves, 0-50,000yeats cal BP
The IntCal04 and Marine04 radiocarbon calibration curves have been updated from 12 cal kBP (cal kBP is here defined as thousands of calibrated years before AD 1950), and extended to 50 cal kBP, utilizing newly available data sets that meet the IntCal Working Group criteria for pristine corals and other carbonates and for quantification of uncertainty in both the 14C and calendar timescales as established in 2002. No change was made to the curves from 0–12 cal kBP. The curves were constructed using a Markov chain Monte Carlo (MCMC) implementation of the random walk model used for IntCal04 and Marine04. The new curves were ratified at the 20th International Radiocarbon Conference in June 2009 and are available in the Supplemental Material at www.radiocarbon.org
Hypoxia induces dilated cardiomyopathy in the chick embryo: mechanism, intervention, and long-term consequences
Background: Intrauterine growth restriction is associated with an increased future risk for developing cardiovascular diseases. Hypoxia in utero is a common clinical cause of fetal growth restriction. We have previously shown that chronic hypoxia alters cardiovascular development in chick embryos. The aim of this study was to further characterize cardiac disease in hypoxic chick embryos. Methods: Chick embryos were exposed to hypoxia and cardiac structure was examined by histological methods one day prior to hatching (E20) and at adulthood. Cardiac function was assessed in vivo by echocardiography and ex vivo by contractility measurements in isolated heart muscle bundles and isolated cardiomyocytes. Chick embryos were exposed to vascular endothelial growth factor (VEGF) and its scavenger soluble VEGF receptor-1 (sFlt-1) to investigate the potential role of this hypoxia-regulated cytokine. Principal Findings: Growth restricted hypoxic chick embryos showed cardiomyopathy as evidenced by left ventricular (LV) dilatation, reduced ventricular wall mass and increased apoptosis. Hypoxic hearts displayed pump dysfunction with decreased LV ejection fractions, accompanied by signs of diastolic dysfunction. Cardiomyopathy caused by hypoxia persisted into adulthood. Hypoxic embryonic hearts showed increases in VEGF expression. Systemic administration of rhVEGF165 to normoxic chick embryos resulted in LV dilatation and a dose-dependent loss of LV wall mass. Lowering VEGF levels in hypoxic embryonic chick hearts by systemic administration of sFlt-1 yielded an almost complete normalization of the phenotype. Conclusions/Significance: Our data show that hypoxia causes a decreased cardiac performance and cardiomyopathy in chick embryos, involving a significant VEGF-mediated component. This cardiomyopathy persists into adulthood
The complex light-curve of the afterglow of GRB071010A
We present and discuss the results of an extensive observational campaign
devoted to GRB071010A, a long-duration gamma-ray burst detected by the Swift
satellite. This event was followed for almost a month in the
optical/near-infrared (NIR) with various telescopes starting from about 2min
after the high-energy event. Swift-XRT observations started only later at about
0.4d. The light-curve evolution allows us to single out an initial rising phase
with a maximum at about 7min, possibly the afterglow onset in the context of
the standard fireball model, which is then followed by a smooth decay
interrupted by a sharp rebrightening at about 0.6d. The rebrightening was
visible in both the optical/NIR and X-rays and can be interpreted as an episode
of discrete energy injection, although various alternatives are possible. A
steepening of the afterglow light curve is recorded at about 1d. The entire
evolution of the optical/NIR afterglow is consistent with being achromatic.
This could be one of the few identified GRB afterglows with an achromatic break
in the X-ray through the optical/NIR bands. Polarimetry was also obtained at
about 1d, just after the rebrightening and almost coincident with the
steepening. This provided a fairly tight upper limit of 0.9% for the
polarized-flux fraction.Comment: 11 pages, 3 figures, MNRAS, in pres
- …
