854 research outputs found

    Anomalously Weak Solar Convection

    Get PDF
    Convection in the solar interior is thought to comprise structures on a spectrum of scales. This conclusion emerges from phenomenological studies and numerical simulations, though neither covers the proper range of dynamical parameters of solar convection. Here, we analyze observations of the wavefield in the solar photosphere using techniques of time-distance helioseismology to image flows in the solar interior. We downsample and synthesize 900 billion wavefield observations to produce 3 billion cross-correlations, which we average and fit, measuring 5 million wave travel times. Using these travel times, we deduce the underlying flow systems and study their statistics to bound convective velocity magnitudes in the solar interior, as a function of depth and spherical-harmonic degree \ell. Within the wavenumber band <60\ell<60, Convective velocities are 20-100 times weaker than current theoretical estimates. This suggests the prevalence of a different paradigm of turbulence from that predicted by existing models, prompting the question: what mechanism transports the heat flux of a solar luminosity outwards? Advection is dominated by Coriolis forces for wavenumbers <60\ell<60, with Rossby numbers smaller than 102\sim10^{-2} at r/R=0.96r/R_\odot=0.96, suggesting that the Sun may be a much faster rotator than previously thought, and that large-scale convection may be quasi-geostrophic. The fact that iso-rotation contours in the Sun are not co-aligned with the axis of rotation suggests the presence of a latitudinal entropy gradient.Comment: PNAS; 5 figures, 5 page

    On the formation of cyclones and anticyclones in a rotating fluid

    Get PDF
    It is commonly observed that the columnar vortices that dominate the large scales in homogeneous, rapidly rotating turbulence are predominantly cyclonic. This has prompted us to ask how this asymmetry arises. To provide a partial answer to this we look at the process of columnar vortex formation in a rotating fluid and, in particular, we examine how a localized region of swirl (an eddy) can convert itself into a columnar structure by inertial wave propagation. We show that, when the Rossby number (Ro) is small, the vortices evolve into columnar eddies through the radiation of linear inertial waves. When the Rossby number is large, on the other hand, no such column is formed. Rather, the eddy bursts radially outward under the action of the centrifugal force. There is no asymmetry between cyclonic and anticyclonic eddies for these two regimes. However, cyclones and anticyclones behave differently in the intermediate regime of Ro~1. Here we find that the transition from columnar vortex formation to radial bursting occurs at lower values of Ro for anticyclones, with the transition for anticyclones occurring at Ro~0.5, and that for cyclones at Ro~2. Thus, in a homogeneous turbulence experiment conducted at, say, Ro=1, we would expect to see more cyclones than anticyclones. The reason for this asymmetry at Ro~1 is explained

    Derivative moments in turbulent shear flows

    Full text link
    We propose a generalized perspective on the behavior of high-order derivative moments in turbulent shear flows by taking account of the roles of small-scale intermittency and mean shear, in addition to the Reynolds number. Two asymptotic regimes are discussed with respect to shear effects. By these means, some existing disagreements on the Reynolds number dependence of derivative moments can be explained. That odd-order moments of transverse velocity derivatives tend not vanish as expected from elementary scaling considerations does not necessarily imply that small-scale anisotropy persists at all Reynolds numbers.Comment: 11 pages, 7 Postscript figure

    Weak nuclear forces cause the strong nuclear force

    Get PDF
    We determine the strength of the weak nuclear force which holds the lattices of the elementary particles together. We also determine the strength of the strong nuclear force which emanates from the sides of the nuclear lattices. The strong force is the sum of the unsaturated weak forces at the surface of the nuclear lattices. The strong force is then about ten to the power of 6 times stronger than the weak force between two lattice points.Comment: 12 pages, 1 figur

    Beyond scaling and locality in turbulence

    Full text link
    An analytic perturbation theory is suggested in order to find finite-size corrections to the scaling power laws. In the frame of this theory it is shown that the first order finite-size correction to the scaling power laws has following form S(r)crα0[ln(r/η)]α1S(r) \cong cr^{\alpha_0}[\ln(r/\eta)]^{\alpha_1}, where η\eta is a finite-size scale (in particular for turbulence, it can be the Kolmogorov dissipation scale). Using data of laboratory experiments and numerical simulations it is shown shown that a degenerate case with α0=0\alpha_0 =0 can describe turbulence statistics in the near-dissipation range r>ηr > \eta, where the ordinary (power-law) scaling does not apply. For moderate Reynolds numbers the degenerate scaling range covers almost the entire range of scales of velocity structure functions (the log-corrections apply to finite Reynolds number). Interplay between local and non-local regimes has been considered as a possible hydrodynamic mechanism providing the basis for the degenerate scaling of structure functions and extended self-similarity. These results have been also expanded on passive scalar mixing in turbulence. Overlapping phenomenon between local and non-local regimes and a relation between position of maximum of the generalized energy input rate and the actual crossover scale between these regimes are briefly discussed.Comment: extended versio

    A Minimalist Turbulent Boundary Layer Model

    Full text link
    We introduce an elementary model of a turbulent boundary layer over a flat surface, given as a vertical random distribution of spanwise Lamb-Oseen vortex configurations placed over a non-slip boundary condition line. We are able to reproduce several important features of realistic flows, such as the viscous and logarithmic boundary sublayers, and the general behavior of the first statistical moments (turbulent intensity, skewness and flatness) of the streamwise velocity fluctuations. As an application, we advance some heuristic considerations on the boundary layer underlying kinematics that could be associated with the phenomenon of drag reduction by polymers, finding a suggestive support from its experimental signatures.Comment: 5 pages, 10 figure

    Antioxidant Activity and Hepatoprotective Potential of Polyalthia longifolia and Cassia spectabilis Leaves against Paracetamol-Induced Liver Injury

    Get PDF
    In the present study, in vitro antioxidant, free radical scavenging capacity, and hepatoprotective activity of methanol extracts from Polyalthia longifolia and Cassia spectabilis were evaluated using established in vitro models such as ferric-reducing antioxidant power (FRAP), 2,2-diphenyl-1-picryl-hydrazyl (DPPH•), hydroxyl radical (OH•), nitric oxide radical (NO•) scavenging, metal chelating, and antilipidperoxidation activities. Interestingly, all the extracts showed considerable in vitro antioxidant and free radical scavenging activities in a dose-dependent manner when compared to the standard antioxidant which verified the presence of strong antioxidant compound in leaf extracts tested. Phenolic and flavonoid content of these extracts is significantly correlated with antioxidant capacity. Since P. longifolia extract was exhibited better in vitro antioxidant activities, it was subjected for in vivo hepatoprotective activity in paracetamol-intoxicated mice. Therapy of P. longifolia showed the liver protective effect on biochemical and histopathological alterations. Moreover, histological studies also supported the biochemical finding, that is, the maximum improvement in the histoarchitecture of the liver. Results revealed that P. longifolia leaf extract could protect the liver against paracetamol-induced oxidative damage by possibly increasing the antioxidant protection mechanism inmice. Our findings indicated that P. longifolia and C. spectabilis have potential as good sources of natural antioxidant/antiaging compounds

    Asteroseismic detection of latitudinal differential rotation in 13 Sun-like stars

    Full text link
    The differentially rotating outer layers of stars are thought to play a role in driving their magnetic activity, but the underlying mechanisms that generate and sustain differential rotation are poorly understood. We report the measurement of latitudinal differential rotation in the convection zones of 40 Sun-like stars using asteroseismology. For the most significant detections, the stars' equators rotate approximately twice as fast as their mid-latitudes. The latitudinal shear inferred from asteroseismology is much larger than predictions from numerical simulations.Comment: 45 pages, 11 figures, 4 tables, published in Scienc

    Butterfly diagram of a Sun-like star observed using asteroseismology

    Full text link
    Stellar magnetic fields are poorly understood but are known to be important for stellar evolution and exoplanet habitability. They drive stellar activity, which is the main observational constraint on theoretical models for magnetic field generation and evolution. Starspots are the main manifestation of the magnetic fields at the stellar surface. In this study we measure the variation of their latitude with time, called a butterfly diagram in the solar case, for the solar analogue HD 173701 (KIC 8006161). To that effect, we use Kepler data, to combine starspot rotation rates at different epochs and the asteroseismically determined latitudinal variation of the stellar rotation rates. We observe a clear variation of the latitude of the starspots. It is the first time such a diagram is constructed using asteroseismic data.Comment: 8 pages, 4 figures, accepted in A&A Letter
    corecore