99 research outputs found

    A quasi three dimensional model of water flow in the subsurface of Milano (Italy): the stationary flow

    No full text
    International audienceA quasi three-dimensional model is developed to simulate the behaviour of the aquifer system which is the resource of drinkable water for the town of Milano (Italy). Non continuous semipermeable layers locally separate permeable levels in a multilayered system, consisting of a phreatic and three confined aquifers. The numerical model is a conservative finite difference scheme based on the discretisation of the water balance equation for stationary flow. The grid spacing is 500 m and has been chosen, taking into account the distribution of the data in an area of about 400 km2. The model has been calibrated with a "trial and error" procedure, by comparison of the results of the model with the observations for three years (1950, 1974 and 1982) which correspond to different flow situations. Once calibrated, the model has been used as a predictive tool, to forecast the behaviour of the aquifer system for other years of the 20th century; the comparison between the model forecasts and observations is good. The model is capable of describing both the strong drawdown of the water table in the 1970s, when the water demand for domestic and industrial needs was very high, and the rise of the water table in the 1990s, when water extraction decreased. The results of the model confirm that the phreatic level is controlled largely by the local extraction of water; moreover, the aquifer system reacts to an increasing water demand with a small increase of the inflow and with a strong decrease of the outflow from its boundaries

    Second Order Dimensionality Reduction Using Minimum and Maximum Mutual Information Models

    Get PDF
    Conventional methods used to characterize multidimensional neural feature selectivity, such as spike-triggered covariance (STC) or maximally informative dimensions (MID), are limited to Gaussian stimuli or are only able to identify a small number of features due to the curse of dimensionality. To overcome these issues, we propose two new dimensionality reduction methods that use minimum and maximum information models. These methods are information theoretic extensions of STC that can be used with non-Gaussian stimulus distributions to find relevant linear subspaces of arbitrary dimensionality. We compare these new methods to the conventional methods in two ways: with biologically-inspired simulated neurons responding to natural images and with recordings from macaque retinal and thalamic cells responding to naturalistic time-varying stimuli. With non-Gaussian stimuli, the minimum and maximum information methods significantly outperform STC in all cases, whereas MID performs best in the regime of low dimensional feature spaces

    Hyperbolic planforms in relation to visual edges and textures perception

    Get PDF
    We propose to use bifurcation theory and pattern formation as theoretical probes for various hypotheses about the neural organization of the brain. This allows us to make predictions about the kinds of patterns that should be observed in the activity of real brains through, e.g. optical imaging, and opens the door to the design of experiments to test these hypotheses. We study the specific problem of visual edges and textures perception and suggest that these features may be represented at the population level in the visual cortex as a specific second-order tensor, the structure tensor, perhaps within a hypercolumn. We then extend the classical ring model to this case and show that its natural framework is the non-Euclidean hyperbolic geometry. This brings in the beautiful structure of its group of isometries and certain of its subgroups which have a direct interpretation in terms of the organization of the neural populations that are assumed to encode the structure tensor. By studying the bifurcations of the solutions of the structure tensor equations, the analog of the classical Wilson and Cowan equations, under the assumption of invariance with respect to the action of these subgroups, we predict the appearance of characteristic patterns. These patterns can be described by what we call hyperbolic or H-planforms that are reminiscent of Euclidean planar waves and of the planforms that were used in [1, 2] to account for some visual hallucinations. If these patterns could be observed through brain imaging techniques they would reveal the built-in or acquired invariance of the neural organization to the action of the corresponding subgroups.Comment: 34 pages, 11 figures, 2 table

    ITERATED QUASI-REVERSIBILITY METHOD APPLIED TO ELLIPTIC AND PARABOLIC DATA COMPLETION PROBLEMS

    Get PDF
    International audienceWe study the iterated quasi-reversibility method to regularize ill-posed elliptic and parabolic problems: data completion problems for Poisson's and heat equations. We define an abstract setting to treat both equations at once. We demonstrate the convergence of the regularized solution to the exact one, and propose a strategy to deal with noise on the data. We present numerical experiments for both problems: a two-dimensional corrosion detection problem and the one-dimensional heat equation with lateral data. In both cases, the method prove to be efficient even with highly corrupted data

    Early life exposures and the risk of adult glioma

    Get PDF
    Abstract Exposure to common infections in early life may stimulate immune development and reduce the risk for developing cancer. Birth order and family size are proxies for the timing of exposure to childhood infections with several studies showing a reduced risk of glioma associated with a higher order of birth (and presumed younger age at infection). The aim of this study was to examine whether birth order, family size, and other early life exposures are associated with the risk of glioma in adults using data collected in a large clinic-based US case-control study including 889 glioma cases and 903 community controls. A structured interviewer-administered questionnaire was used to collect information on family structure, childhood exposures and other potential risk factors. Logistic regression was used to calculate odds ratios (OR) and corresponding 95 % confidence intervals (CI) for the association between early life factors and glioma risk. Persons having any siblings were at significantly lower risk for glioma when compared to those reporting no siblings (OR = 0.64; 95 % CI 0.44-0.93; p = 0.020). Compared to first-borns, individuals with older siblings had a significantly lower risk (OR = 0.75; 95 % CI 0.61-0.91; p = 0.004). Birth weight, having been breast fed in infancy, and season of birth were not associated with glioma risk. The current findings lend further support to a growing body of evidence that early exposure to childhood infections reduces the risk of glioma onset in children and adults

    Self-organization and the selection of pinwheel density in visual cortical development

    Full text link
    Self-organization of neural circuitry is an appealing framework for understanding cortical development, yet its applicability remains unconfirmed. Models for the self-organization of neural circuits have been proposed, but experimentally testable predictions of these models have been less clear. The visual cortex contains a large number of topological point defects, called pinwheels, which are detectable in experiments and therefore in principle well suited for testing predictions of self-organization empirically. Here, we analytically calculate the density of pinwheels predicted by a pattern formation model of visual cortical development. An important factor controlling the density of pinwheels in this model appears to be the presence of non-local long-range interactions, a property which distinguishes cortical circuits from many nonliving systems in which self-organization has been studied. We show that in the limit where the range of these interactions is infinite, the average pinwheel density converges to π\pi. Moreover, an average pinwheel density close to this value is robustly selected even for intermediate interaction ranges, a regime arguably covering interaction-ranges in a wide range of different species. In conclusion, our paper provides the first direct theoretical demonstration and analysis of pinwheel density selection in models of cortical self-organization and suggests to quantitatively probe this type of prediction in future high-precision experiments.Comment: 22 pages, 3 figure

    Optic Flow Stimuli in and Near the Visual Field Centre: A Group fMRI Study of Motion Sensitive Regions

    Get PDF
    Motion stimuli in one visual hemifield activate human primary visual areas of the contralateral side, but suppress activity of the corresponding ipsilateral regions. While hemifield motion is rare in everyday life, motion in both hemifields occurs regularly whenever we move. Consequently, during motion primary visual regions should simultaneously receive excitatory and inhibitory inputs. A comparison of primary and higher visual cortex activations induced by bilateral and unilateral motion stimuli is missing up to now. Many motion studies focused on the MT+ complex in the parieto-occipito-temporal cortex. In single human subjects MT+ has been subdivided in area MT, which was activated by motion stimuli in the contralateral visual field, and area MST, which responded to motion in both the contra- and ipsilateral field. In this study we investigated the cortical activation when excitatory and inhibitory inputs interfere with each other in primary visual regions and we present for the first time group results of the MT+ subregions, allowing for comparisons with the group results of other motion processing studies. Using functional magnetic resonance imaging (fMRI), we investigated whole brain activations in a large group of healthy humans by applying optic flow stimuli in and near the visual field centre and performed a second level analysis. Primary visual areas were activated exclusively by motion in the contralateral field but to our surprise not by central flow fields. Inhibitory inputs to primary visual regions appear to cancel simultaneously occurring excitatory inputs during central flow field stimulation. Within MT+ we identified two subregions. Putative area MST (pMST) was activated by ipsi- and contralateral stimulation and located in the anterior part of MT+. The second subregion was located in the more posterior part of MT+ (putative area MT, pMT)

    Using high angular resolution diffusion imaging data to discriminate cortical regions

    Get PDF
    Brodmann's 100-year-old summary map has been widely used for cortical localization in neuroscience. There is a pressing need to update this map using non-invasive, high-resolution and reproducible data, in a way that captures individual variability. We demonstrate here that standard HARDI data has sufficiently diverse directional variation among grey matter regions to inform parcellation into distinct functional regions, and that this variation is reproducible across scans. This characterization of the signal variation as non-random and reproducible is the critical condition for successful cortical parcellation using HARDI data. This paper is a first step towards an individual cortex-wide map of grey matter microstructure, The gray/white matter and pial boundaries were identified on the high-resolution structural MRI images. Two HARDI data sets were collected from each individual and aligned with the corresponding structural image. At each vertex point on the surface tessellation, the diffusion-weighted signal was extracted from each image in the HARDI data set at a point, half way between gray/white matter and pial boundaries. We then derived several features of the HARDI profile with respect to the local cortical normal direction, as well as several fully orientationally invariant features. These features were taken as a fingerprint of the underlying grey matter tissue, and used to distinguish separate cortical areas. A support-vector machine classifier, trained on three distinct areas in repeat 1 achieved 80-82% correct classification of the same three areas in the unseen data from repeat 2 in three volunteers. Though gray matter anisotropy has been mostly overlooked hitherto, this approach may eventually form the foundation of a new cortical parcellation method in living humans. Our approach allows for further studies on the consistency of HARDI based parcellation across subjects and comparison with independent microstructural measures such as ex-vivo histology

    Quantitative estimates of unique continuation for parabolic equations, determination of unknown time-varying boundaries and optimal stability estimates

    Full text link
    In this paper we will review the main results concerning the issue of stability for the determination unknown boundary portion of a thermic conducting body from Cauchy data for parabolic equations. We give detailed and selfcontained proofs. We prove that such problems are severely ill-posed in the sense that under a priori regularity assumptions on the unknown boundaries, up to any finite order of differentiability, the continuous dependence of unknown boundary from the measured data is, at best, of logarithmic type
    corecore