513 research outputs found
ROC and the bounds on tail probabilities via theorems of Dubins and F. Riesz
For independent and in the inequality , we give sharp
lower bounds for unimodal distributions having finite variance, and sharp upper
bounds assuming symmetric densities bounded by a finite constant. The lower
bounds depend on a result of Dubins about extreme points and the upper bounds
depend on a symmetric rearrangement theorem of F. Riesz. The inequality was
motivated by medical imaging: find bounds on the area under the Receiver
Operating Characteristic curve (ROC).Comment: Published in at http://dx.doi.org/10.1214/08-AAP536 the Annals of
Applied Probability (http://www.imstat.org/aap/) by the Institute of
Mathematical Statistics (http://www.imstat.org
Drift rate control of a Brownian processing system
A system manager dynamically controls a diffusion process Z that lives in a
finite interval [0,b]. Control takes the form of a negative drift rate \theta
that is chosen from a fixed set A of available values. The controlled process
evolves according to the differential relationship dZ=dX-\theta(Z) dt+dL-dU,
where X is a (0,\sigma) Brownian motion, and L and U are increasing processes
that enforce a lower reflecting barrier at Z=0 and an upper reflecting barrier
at Z=b, respectively. The cumulative cost process increases according to the
differential relationship d\xi =c(\theta(Z)) dt+p dU, where c(\cdot) is a
nondecreasing cost of control and p>0 is a penalty rate associated with
displacement at the upper boundary. The objective is to minimize long-run
average cost. This problem is solved explicitly, which allows one to also solve
the following, essentially equivalent formulation: minimize the long-run
average cost of control subject to an upper bound constraint on the average
rate at which U increases. The two special problem features that allow an
explicit solution are the use of a long-run average cost criterion, as opposed
to a discounted cost criterion, and the lack of state-related costs other than
boundary displacement penalties. The application of this theory to power
control in wireless communication is discussed.Comment: Published at http://dx.doi.org/10.1214/105051604000000855 in the
Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute
of Mathematical Statistics (http://www.imstat.org
First-Digit Law in Nonextensive Statistics
Nonextensive statistics, characterized by a nonextensive parameter , is a
promising and practically useful generalization of the Boltzmann statistics to
describe power-law behaviors from physical and social observations. We here
explore the unevenness of the first digit distribution of nonextensive
statistics analytically and numerically. We find that the first-digit
distribution follows Benford's law and fluctuates slightly in a periodical
manner with respect to the logarithm of the temperature. The fluctuation
decreases when increases, and the result converges to Benford's law exactly
as approaches 2. The relevant regularities between nonextensive statistics
and Benford's law are also presented and discussed.Comment: 11 pages, 3 figures, published in Phys. Rev.
Maximum-likelihood absorption tomography
Maximum-likelihood methods are applied to the problem of absorption
tomography. The reconstruction is done with the help of an iterative algorithm.
We show how the statistics of the illuminating beam can be incorporated into
the reconstruction. The proposed reconstruction method can be considered as a
useful alternative in the extreme cases where the standard ill-posed
direct-inversion methods fail.Comment: 7 pages, 5 figure
Distribution of roots of random real generalized polynomials
The average density of zeros for monic generalized polynomials,
, with real holomorphic and
real Gaussian coefficients is expressed in terms of correlation functions of
the values of the polynomial and its derivative. We obtain compact expressions
for both the regular component (generated by the complex roots) and the
singular one (real roots) of the average density of roots. The density of the
regular component goes to zero in the vicinity of the real axis like
. We present the low and high disorder asymptotic
behaviors. Then we particularize to the large limit of the average density
of complex roots of monic algebraic polynomials of the form with real independent, identically distributed
Gaussian coefficients having zero mean and dispersion . The average density tends to a simple, {\em universal}
function of and in the domain where nearly all the roots are located for
large .Comment: 17 pages, Revtex. To appear in J. Stat. Phys. Uuencoded gz-compresed
tarfile (.66MB) containing 8 Postscript figures is available by e-mail from
[email protected]
On leaders and condensates in a growing network
The Bianconi-Barabasi model of a growing network is revisited. This model,
defined by a preferential attachment rule involving both the degrees of the
nodes and their intrinsic fitnesses, has the fundamental property to undergo a
phase transition to a condensed phase below some finite critical temperature,
for an appropriate choice of the distribution of fitnesses. At high temperature
it exhibits a crossover to the Barabasi-Albert model, and at low temperature,
where the fitness landscape becomes very rugged, a crossover to the recently
introduced record-driven growth process. We first present an analysis of the
history of leaders, the leader being defined as the node with largest degree at
a given time. In the generic finite-temperature regime, new leaders appear
endlessly, albeit on a doubly logarithmic time scale, i.e., extremely slowly.
We then give a novel picture for the dynamics in the condensed phase. The
latter is characterized by an infinite hierarchy of condensates, whose sizes
are non-self-averaging and keep fluctuating forever.Comment: 29 pages, 13 figures, 3 tables. A few minor change
Deconvolving Instrumental and Intrinsic Broadening in Excited State X-ray Spectroscopies
Intrinsic and experimental mechanisms frequently lead to broadening of
spectral features in excited-state spectroscopies. For example, intrinsic
broadening occurs in x-ray absorption spectroscopy (XAS) measurements of heavy
elements where the core-hole lifetime is very short. On the other hand,
nonresonant x-ray Raman scattering (XRS) and other energy loss measurements are
more limited by instrumental resolution. Here, we demonstrate that the
Richardson-Lucy (RL) iterative algorithm provides a robust method for
deconvolving instrumental and intrinsic resolutions from typical XAS and XRS
data. For the K-edge XAS of Ag, we find nearly complete removal of ~9.3 eV FWHM
broadening from the combined effects of the short core-hole lifetime and
instrumental resolution. We are also able to remove nearly all instrumental
broadening in an XRS measurement of diamond, with the resulting improved
spectrum comparing favorably with prior soft x-ray XAS measurements. We present
a practical methodology for implementing the RL algorithm to these problems,
emphasizing the importance of testing for stability of the deconvolution
process against noise amplification, perturbations in the initial spectra, and
uncertainties in the core-hole lifetime.Comment: 35 pages, 13 figure
Artificial Sequences and Complexity Measures
In this paper we exploit concepts of information theory to address the
fundamental problem of identifying and defining the most suitable tools to
extract, in a automatic and agnostic way, information from a generic string of
characters. We introduce in particular a class of methods which use in a
crucial way data compression techniques in order to define a measure of
remoteness and distance between pairs of sequences of characters (e.g. texts)
based on their relative information content. We also discuss in detail how
specific features of data compression techniques could be used to introduce the
notion of dictionary of a given sequence and of Artificial Text and we show how
these new tools can be used for information extraction purposes. We point out
the versatility and generality of our method that applies to any kind of
corpora of character strings independently of the type of coding behind them.
We consider as a case study linguistic motivated problems and we present
results for automatic language recognition, authorship attribution and self
consistent-classification.Comment: Revised version, with major changes, of previous "Data Compression
approach to Information Extraction and Classification" by A. Baronchelli and
V. Loreto. 15 pages; 5 figure
Stable Distributions in Stochastic Fragmentation
We investigate a class of stochastic fragmentation processes involving stable
and unstable fragments. We solve analytically for the fragment length density
and find that a generic algebraic divergence characterizes its small-size tail.
Furthermore, the entire range of acceptable values of decay exponent consistent
with the length conservation can be realized. We show that the stochastic
fragmentation process is non-self-averaging as moments exhibit significant
sample-to-sample fluctuations. Additionally, we find that the distributions of
the moments and of extremal characteristics possess an infinite set of
progressively weaker singularities.Comment: 11 pages, 5 figure
Real roots of Random Polynomials: Universality close to accumulation points
We identify the scaling region of a width O(n^{-1}) in the vicinity of the
accumulation points of the real roots of a random Kac-like polynomial
of large degree n. We argue that the density of the real roots in this region
tends to a universal form shared by all polynomials with independent,
identically distributed coefficients c_i, as long as the second moment
\sigma=E(c_i^2) is finite. In particular, we reveal a gradual (in contrast to
the previously reported abrupt) and quite nontrivial suppression of the number
of real roots for coefficients with a nonzero mean value \mu_n = E(c_i) scaled
as \mu_n\sim n^{-1/2}.Comment: Some minor mistakes that crept through into publication have been
removed. 10 pages, 12 eps figures. This version contains all updates, clearer
pictures and some more thorough explanation
- …
