513 research outputs found

    ROC and the bounds on tail probabilities via theorems of Dubins and F. Riesz

    Full text link
    For independent XX and YY in the inequality P(XY+μ)P(X\leq Y+\mu), we give sharp lower bounds for unimodal distributions having finite variance, and sharp upper bounds assuming symmetric densities bounded by a finite constant. The lower bounds depend on a result of Dubins about extreme points and the upper bounds depend on a symmetric rearrangement theorem of F. Riesz. The inequality was motivated by medical imaging: find bounds on the area under the Receiver Operating Characteristic curve (ROC).Comment: Published in at http://dx.doi.org/10.1214/08-AAP536 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Drift rate control of a Brownian processing system

    Full text link
    A system manager dynamically controls a diffusion process Z that lives in a finite interval [0,b]. Control takes the form of a negative drift rate \theta that is chosen from a fixed set A of available values. The controlled process evolves according to the differential relationship dZ=dX-\theta(Z) dt+dL-dU, where X is a (0,\sigma) Brownian motion, and L and U are increasing processes that enforce a lower reflecting barrier at Z=0 and an upper reflecting barrier at Z=b, respectively. The cumulative cost process increases according to the differential relationship d\xi =c(\theta(Z)) dt+p dU, where c(\cdot) is a nondecreasing cost of control and p>0 is a penalty rate associated with displacement at the upper boundary. The objective is to minimize long-run average cost. This problem is solved explicitly, which allows one to also solve the following, essentially equivalent formulation: minimize the long-run average cost of control subject to an upper bound constraint on the average rate at which U increases. The two special problem features that allow an explicit solution are the use of a long-run average cost criterion, as opposed to a discounted cost criterion, and the lack of state-related costs other than boundary displacement penalties. The application of this theory to power control in wireless communication is discussed.Comment: Published at http://dx.doi.org/10.1214/105051604000000855 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    First-Digit Law in Nonextensive Statistics

    Full text link
    Nonextensive statistics, characterized by a nonextensive parameter qq, is a promising and practically useful generalization of the Boltzmann statistics to describe power-law behaviors from physical and social observations. We here explore the unevenness of the first digit distribution of nonextensive statistics analytically and numerically. We find that the first-digit distribution follows Benford's law and fluctuates slightly in a periodical manner with respect to the logarithm of the temperature. The fluctuation decreases when qq increases, and the result converges to Benford's law exactly as qq approaches 2. The relevant regularities between nonextensive statistics and Benford's law are also presented and discussed.Comment: 11 pages, 3 figures, published in Phys. Rev.

    Maximum-likelihood absorption tomography

    Full text link
    Maximum-likelihood methods are applied to the problem of absorption tomography. The reconstruction is done with the help of an iterative algorithm. We show how the statistics of the illuminating beam can be incorporated into the reconstruction. The proposed reconstruction method can be considered as a useful alternative in the extreme cases where the standard ill-posed direct-inversion methods fail.Comment: 7 pages, 5 figure

    Distribution of roots of random real generalized polynomials

    Full text link
    The average density of zeros for monic generalized polynomials, Pn(z)=ϕ(z)+k=1nckfk(z)P_n(z)=\phi(z)+\sum_{k=1}^nc_kf_k(z), with real holomorphic ϕ,fk\phi ,f_k and real Gaussian coefficients is expressed in terms of correlation functions of the values of the polynomial and its derivative. We obtain compact expressions for both the regular component (generated by the complex roots) and the singular one (real roots) of the average density of roots. The density of the regular component goes to zero in the vicinity of the real axis like Imz|\hbox{\rm Im}\,z|. We present the low and high disorder asymptotic behaviors. Then we particularize to the large nn limit of the average density of complex roots of monic algebraic polynomials of the form Pn(z)=zn+k=1nckznkP_n(z) = z^n +\sum_{k=1}^{n}c_kz^{n-k} with real independent, identically distributed Gaussian coefficients having zero mean and dispersion δ=1nλ\delta = \frac 1{\sqrt{n\lambda}}. The average density tends to a simple, {\em universal} function of ξ=2nlogz\xi={2n}{\log |z|} and λ\lambda in the domain ξcothξ2nsinarg(z)\xi\coth \frac{\xi}{2}\ll n|\sin \arg (z)| where nearly all the roots are located for large nn.Comment: 17 pages, Revtex. To appear in J. Stat. Phys. Uuencoded gz-compresed tarfile (.66MB) containing 8 Postscript figures is available by e-mail from [email protected]

    On leaders and condensates in a growing network

    Full text link
    The Bianconi-Barabasi model of a growing network is revisited. This model, defined by a preferential attachment rule involving both the degrees of the nodes and their intrinsic fitnesses, has the fundamental property to undergo a phase transition to a condensed phase below some finite critical temperature, for an appropriate choice of the distribution of fitnesses. At high temperature it exhibits a crossover to the Barabasi-Albert model, and at low temperature, where the fitness landscape becomes very rugged, a crossover to the recently introduced record-driven growth process. We first present an analysis of the history of leaders, the leader being defined as the node with largest degree at a given time. In the generic finite-temperature regime, new leaders appear endlessly, albeit on a doubly logarithmic time scale, i.e., extremely slowly. We then give a novel picture for the dynamics in the condensed phase. The latter is characterized by an infinite hierarchy of condensates, whose sizes are non-self-averaging and keep fluctuating forever.Comment: 29 pages, 13 figures, 3 tables. A few minor change

    Deconvolving Instrumental and Intrinsic Broadening in Excited State X-ray Spectroscopies

    Full text link
    Intrinsic and experimental mechanisms frequently lead to broadening of spectral features in excited-state spectroscopies. For example, intrinsic broadening occurs in x-ray absorption spectroscopy (XAS) measurements of heavy elements where the core-hole lifetime is very short. On the other hand, nonresonant x-ray Raman scattering (XRS) and other energy loss measurements are more limited by instrumental resolution. Here, we demonstrate that the Richardson-Lucy (RL) iterative algorithm provides a robust method for deconvolving instrumental and intrinsic resolutions from typical XAS and XRS data. For the K-edge XAS of Ag, we find nearly complete removal of ~9.3 eV FWHM broadening from the combined effects of the short core-hole lifetime and instrumental resolution. We are also able to remove nearly all instrumental broadening in an XRS measurement of diamond, with the resulting improved spectrum comparing favorably with prior soft x-ray XAS measurements. We present a practical methodology for implementing the RL algorithm to these problems, emphasizing the importance of testing for stability of the deconvolution process against noise amplification, perturbations in the initial spectra, and uncertainties in the core-hole lifetime.Comment: 35 pages, 13 figure

    Artificial Sequences and Complexity Measures

    Get PDF
    In this paper we exploit concepts of information theory to address the fundamental problem of identifying and defining the most suitable tools to extract, in a automatic and agnostic way, information from a generic string of characters. We introduce in particular a class of methods which use in a crucial way data compression techniques in order to define a measure of remoteness and distance between pairs of sequences of characters (e.g. texts) based on their relative information content. We also discuss in detail how specific features of data compression techniques could be used to introduce the notion of dictionary of a given sequence and of Artificial Text and we show how these new tools can be used for information extraction purposes. We point out the versatility and generality of our method that applies to any kind of corpora of character strings independently of the type of coding behind them. We consider as a case study linguistic motivated problems and we present results for automatic language recognition, authorship attribution and self consistent-classification.Comment: Revised version, with major changes, of previous "Data Compression approach to Information Extraction and Classification" by A. Baronchelli and V. Loreto. 15 pages; 5 figure

    Stable Distributions in Stochastic Fragmentation

    Full text link
    We investigate a class of stochastic fragmentation processes involving stable and unstable fragments. We solve analytically for the fragment length density and find that a generic algebraic divergence characterizes its small-size tail. Furthermore, the entire range of acceptable values of decay exponent consistent with the length conservation can be realized. We show that the stochastic fragmentation process is non-self-averaging as moments exhibit significant sample-to-sample fluctuations. Additionally, we find that the distributions of the moments and of extremal characteristics possess an infinite set of progressively weaker singularities.Comment: 11 pages, 5 figure

    Real roots of Random Polynomials: Universality close to accumulation points

    Full text link
    We identify the scaling region of a width O(n^{-1}) in the vicinity of the accumulation points t=±1t=\pm 1 of the real roots of a random Kac-like polynomial of large degree n. We argue that the density of the real roots in this region tends to a universal form shared by all polynomials with independent, identically distributed coefficients c_i, as long as the second moment \sigma=E(c_i^2) is finite. In particular, we reveal a gradual (in contrast to the previously reported abrupt) and quite nontrivial suppression of the number of real roots for coefficients with a nonzero mean value \mu_n = E(c_i) scaled as \mu_n\sim n^{-1/2}.Comment: Some minor mistakes that crept through into publication have been removed. 10 pages, 12 eps figures. This version contains all updates, clearer pictures and some more thorough explanation
    corecore