research

ROC and the bounds on tail probabilities via theorems of Dubins and F. Riesz

Abstract

For independent XX and YY in the inequality P(XY+μ)P(X\leq Y+\mu), we give sharp lower bounds for unimodal distributions having finite variance, and sharp upper bounds assuming symmetric densities bounded by a finite constant. The lower bounds depend on a result of Dubins about extreme points and the upper bounds depend on a symmetric rearrangement theorem of F. Riesz. The inequality was motivated by medical imaging: find bounds on the area under the Receiver Operating Characteristic curve (ROC).Comment: Published in at http://dx.doi.org/10.1214/08-AAP536 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 03/01/2020