991 research outputs found

    A local structural descriptor for image matching via normalized graph laplacian embedding

    Get PDF
    This paper investigates graph spectral approaches to the problem of point pattern matching. Specifically, we concentrate on the issue of how to effectively use graph spectral properties to characterize point patterns in the presence of positional jitter and outliers. A novel local spectral descriptor is proposed to represent the attribute domain of feature points. For a point in a given point-set, weight graphs are constructed on its neighboring points and then their normalized Laplacian matrices are computed. According to the known spectral radius of the normalized Laplacian matrix, the distribution of the eigenvalues of these normalized Laplacian matrices is summarized as a histogram to form a descriptor. The proposed spectral descriptor is finally combined with the approximate distance order for recovering correspondences between point-sets. Extensive experiments demonstrate the effectiveness of the proposed approach and its superiority to the existing methods

    Centrality, system size and energy dependences of charged-particle pseudo-rapidity distribution

    Full text link
    Utilizing the three-fireball picture within the quark combination model, we study systematically the charged particle pseudorapidity distributions in both Au+Au and Cu+Cu collision systems as a function of collision centrality and energy, sNN=\sqrt{s_{NN}}= 19.6, 62.4, 130 and 200 GeV, in full pseudorapidity range. We find that: (i)the contribution from leading particles to dNch/dηdN_{ch}/d\eta distributions increases with the decrease of the collision centrality and energy respectively; (ii)the number of the leading particles is almost independent of the collision energy, but it does depend on the nucleon participants NpartN_{part}; (iii)if Cu+Cu and Au+Au collisions at the same collision energy are selected to have the same NpartN_{part}, the resulting of charged particle dN/dηdN/d\eta distributions are nearly identical, both in the mid-rapidity particle density and the width of the distribution. This is true for both 62.4 GeV and 200 GeV data. (iv)the limiting fragmentation phenomenon is reproduced. (iiv) we predict the total multiplicity and pseudorapidity distribution for the charged particles in Pb+Pb collisions at sNN=5.5\sqrt{s_{NN}}= 5.5 TeV. Finally, we give a qualitative analysis of the Nch/N_{ch}/ and dNch/dη/∣η≈0dN_{ch}/d\eta/|_{\eta\approx0} as function of sNN\sqrt{s_{NN}} and NpartN_{part} from RHIC to LHC.Comment: 12 pages, 8 figure

    Manipulation of Host Quality and Defense by a Plant Virus Improves Performance of Whitefly Vectors

    Get PDF
    Pathogen-mediated interactions between insect vectors and their host plants can affect herbivore fitness and the epidemiology of plant diseases. While the role of plant quality and defense in mediating these tripartite interactions has been recognized, there are many ecologically- and economically-important cases where the nature of the interaction has yet to be characterized. The Bemisia tabaci cryptic species MED is an important vector of tomato yellow leaf curl virus (TYLCV), and performs better on virus-infected tomato than on uninfected controls. We assessed the impact of TYLCV infection on plant quality and defense, and the direct impact of TYLCV infection on MED feeding. We found that although TYLCV infection has a minimal direct impact on MED, the virus alters the nutritional content of leaf tissue and phloem sap in a manner beneficial to MED. TYLCV infection also suppresses herbivore-induced production of plant defensive enzymes and callose deposition. The strongly positive net effect on TYLCV on MED is consistent with previously-reported patterns of whitefly behavior and performance, and provides a foundation for further exploration of the molecular mechanisms responsible for these effects and the evolutionary processes that shape them

    Structural and optical properties of GaSbBi/GaSb quantum wells [Invited]

    Get PDF
    GaSbBi/GaSb quantum wells (QWs) with Bi content up to 10.1% were grown using molecular beam epitaxy. High crystalline quality and clear interfaces were confirmed by high resolution transmission electron microscopy. The Bi distribution was investigated using energy dispersive X-ray spectroscopy. Room temperature photoluminescence (PL) reveals that the peak energy redshifts at a rate of 32 meV/Bi%, consistent with the theoretical predication using the 8-band kp model. From the temperature dependent PL, it was found that the temperature-insensitivity of the transition from the GaSbBi QW improved with increasing Bi content

    Weighing Super-Massive Black Holes with Narrow Fe Kα\alpha Line

    Full text link
    It has been suggested that the narrow cores of the Fe Kα\alpha emission lines in Active Galactic Nuclei (AGNs) are likely produced in the torus, the inner radius of which can be measured by observing the lag time between the VV and KK band flux variations. In this paper we compare the virial products of the infrared time lags and the narrow Fe Kα\alpha widths for 10 type 1 AGNs with the black hole masses from other techniques. We find the narrow Fe Kα\alpha line width is in average 2.6−0.4+0.9^{+0.9}_{-0.4} times broader than expected assuming an isotropic velocity distribution of the torus at the distance measured by the infrared lags. We propose the thick disk model of the torus could explain the observed larger line width. Another possibility is the contamination by emission from the broad line region or the outer accretion disk. Alternatively, the narrow iron line might originate from the inner most part of the obscuring torus within the sublimation radius, while the infrared emission from outer cooler part. We note the correlation between the black hole masses based on this new technique and those based on other known techniques is statistically insignificant. We argue that this could be attributed to the small sample size and the very large uncertainties in the measurements of iron K line widths. The next generation of X-ray observatories could help verify the origin of the narrow iron Kα\alpha line and the reliability of this new technique.Comment: 12 pages, 2 figures, 2 tables, Science China G, in pres

    Notch1 Pathway Activity Determines the Regulatory Role of Cancer-Associated Fibroblasts in Melanoma Growth and Invasion

    Get PDF
    Cancer-associated fibroblasts (CAF) play a crucial role in regulating cancer progression, yet the molecular determinant that governs the tumor regulatory role of CAF remains unknown. Using a mouse melanoma model in which exogenous melanoma cells were grafted on the skin of two lines of mice where the genetic activation or inactivation of Notch1 signaling specifically occurs in natural host stromal fibroblasts, we demonstrated that Notch1 pathway activity could determine the tumor-promoting or tumor-suppressing phenotype in CAF. CAF carrying elevated Notch1 activity significantly inhibited melanoma growth and invasion, while those with a null Notch1 promoted melanoma invasion. These findings identify the Notch1 pathway as a molecular determinant that controls the regulatory role of CAF in melanoma skin growth and invasion, unveiling Notch1 signaling as a potential therapeutic target for melanoma and potentially other solid tumors

    Dysregulated protocadherin-pathway activity as an intrinsic defect in induced pluripotent stem cell-derived cortical interneurons from subjects with schizophrenia.

    Get PDF
    We generated cortical interneurons (cINs) from induced pluripotent stem cells derived from 14 healthy controls and 14 subjects with schizophrenia. Both healthy control cINs and schizophrenia cINs were authentic, fired spontaneously, received functional excitatory inputs from host neurons, and induced GABA-mediated inhibition in host neurons in vivo. However, schizophrenia cINs had dysregulated expression of protocadherin genes, which lie within documented schizophrenia loci. Mice lacking protocadherin-α showed defective arborization and synaptic density of prefrontal cortex cINs and behavioral abnormalities. Schizophrenia cINs similarly showed defects in synaptic density and arborization that were reversed by inhibitors of protein kinase C, a downstream kinase in the protocadherin pathway. These findings reveal an intrinsic abnormality in schizophrenia cINs in the absence of any circuit-driven pathology. They also demonstrate the utility of homogenous and functional populations of a relevant neuronal subtype for probing pathogenesis mechanisms during development
    • …
    corecore