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Abstract—This paper investigates graph spectral approaches 
to the problem of point pattern matching. Specifically, we con- 
centrate on the issue of how to effectively use graph spectral 

properties to characterize point patterns in the presence of posi- 
tional jitter and outliers. A novel local spectral descriptor is 
proposed to represent the attribute domain of feature points.   

For a point in a given point-set, weight graphs are constructed  
on its neighboring points and then their normalized Laplacian 
matrices are computed. According to the known spectral radius 

of the normalized Laplacian matrix, the distribution of the eigen- 
values of these normalized Laplacian matrices is summarized as  
a histogram to form a descriptor. The proposed spectral descrip- 

tor is finally combined with the approximate distance order for 
recovering correspondences between point-sets. Extensive exper- 
iments demonstrate the effectiveness of the proposed approach 

and its superiority to the existing   methods. 

Index Terms—Graph spectrum, local structural descriptor, 
normalized Laplacian matrix, point pattern matching   (PPM). 

 

 
I. INTRODUCTION 

OCAL features are popular and important in computer 

vision [1]. Therefore, finding correspondences between 

feature point-sets is critical  for  many practical  applica- tions, 

such as 3-D reconstruction [2], object recognition [3], motion   

tracking [4],   image   retrieval [5]–[7],   and    action 

recognition [8], [9]. 

Graph spectral methods for point pattern matching (PPM) 

have received much attention over the past two decades due 

largely  to  their  prominent  ability  of  capturing  the essence 
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of point-set structure. However, their sensitivity  to  struc-  

tural errors caused by  positional  jitter  and  outliers  is  still  

an open issue. In this paper, we aim to improve the robust- 

ness of spectral matching methods by providing a novel 

spectral representation for point patterns. Almost all the avail- 

able spectral matching methods concentrate on using the 

eigenvectors of various matrix representations. For instance,  

in [10]–[13], the eigenvectors are employed as the global 

features of point patterns.  In [14] and [15],  the  eigenvec-  

tors are used as the correspondence indicators. The numeric 

approach to eigen-decomposition is a least squares method, 

and therefore, positional jitter inevitably brings errors to the 

computation of eigenvectors. In order to overcome this weak- 

ness, some iterative optimization methods were proposed to 

resist such negative effects [12], [13]. Nonetheless, the pres- 

ence of outliers makes the sizes of graphs different, which 

renders the comparison of the eigenvectors difficult. Although 

some researchers proposed to truncate the eigenvectors to 

make the length of the compared eigenvectors identical, this 

empirical operation may result in the ineffectiveness of the 

spectral representation when the difference is relatively large. 

Moreover, there are no satisfactory solutions available to 

determine which components of the eigenvectors to remove   

so far. 

To address these issues, we attempt to localize the spectral 

representation of point patterns. Specifically, we use spectral 

properties of structural graphs constructed on its neighboring 

sub-point-sets to describe a feature point. The advantage of 

such a localized representation is that the influence of posi- 

tional jitter is only brought by the neighboring sub-point-sets 

rather than the whole point-set. And a completely different 

idea is adopted to tackle the issue of comparing spectral 

properties with different sizes. We  have  observed that most  

of the available local descriptors such as shape context [16], 

SIFT [17], and SURF [18] use the distribution of some proper- 

ties extracted from images to describe a feature point. Inspired 

by these works, we turn to exploiting the distribution of 

spectral properties to construct a spectral descriptor. The con- 

sequent difficulty is that the numeric boundary of most spectral 

properties is very hard to obtain, which makes the analysis of 

their distribution infeasible. Fortunately, thanks to the known 

spectral radius of the normalized Laplacian matrix, we can use 

the distribution of their eigenvalues to form a histogram-based 

descriptor. Meanwhile, as eigenvalues contain useful informa- 

tion for characterizing graph structures [19], [20], we believe 

that the proposed descriptor holds sufficient discriminative 

power. 
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The rest of this paper is organized as follows. In Section II, 

we give a brief review of related works. In Section III, we 

present the construction procedure of the proposed spectral 

descriptor. In Section IV, the descriptor is used with the 

approximate distance order to solve PPM via the technique    

of probabilistic relaxation. We demonstrate the effectiveness 

of our approach with experiments in Section V, and this paper 

is concluded with some future work in Section   VI. 

 
 

II. RELATED WORK 

A number of attempts have been made for  applying  

spectral  graph  theory  to  PPM.  Umeyama [21]  proposed  

the  pioneer  work  in  spectral  matching.  They  developed   

an approximate algorithm for graph matching by using eigen-

decomposition. Scott and Longuet-Higgins [10] recov- ered 

correspondences between point-sets by performing sin- gular 

value decomposition on a weight point  associate  matrix. Pilu 

[22] improved [10] by including the  neigh-  boring intensity 

correlation into the computation of  asso-  ciate  weights.  In  

order  to   overcome   the   weakness   of  the method of Scott 

and Longuet-Higgins  for  large  rota-  tion and scaling, 

Shapiro and Brady [11] presented a match- ing algorithm by  

comparing  the  ordered  eigenvectors  of  the intraimage point 

proximity matrices. However,  this  method is extremely 

sensitive to the size difference between point-sets. Fairly 

speaking, [10] and [11] established a foun- dation for the 

subsequent research on spectral matching. Carcassoni and 

Hancock [12] embedded Shapiro and Brady’s method into the 

expectation maximization framework, where iterative 

correspondences and transformation estimation are used to 

refine the matching results delivered by Shapiro and Brady’s 

method. Caracassoni and Hancock [23] also reported a 

hierarchical matching method by using spectral clusters. 

Delphonte et al. [24] extended [22] by incorporating the sim- 

ilarity of SIFT descriptors into the computation of the prox- 

imity matrix. Wang and Hancock [13] used the rationale of 

kernel principal component analysis (PCA) to theoretically 

analyze Shapiro and Brady’s method. They also showed that 

label consistency constraints can be incorporated into the 

definition of the point proximity matrix. Silletti et al. [25] 

used a variety of similarity metrics to construct the point 

associate matrix. Their solution to recovering correspon- 

dences is built upon Scott and Longuet-Higgins’ method. 

Leordeanu and Hebert [14] formulated point matching as a 

problem of integer quadratic programming. In order to avoid 

combinational search, the leading eigenvector of the affinity 

matrix is computed as the correspondence indicator by means 

of spectral relaxation. Qiu and Hancock [26] used the  Fiedler 

Luo et al. [19] used spectral properties of the adjacency 

matrices such as eigenvalues, Cheeger constant, and eigen- 

mode perimeter to embed symbolic relational graphs in a 

pattern space and applied them to the task of object classifica- 

tion. Wilson et al. [28] employed eigenvectors of Laplacian 

matrix to construct permutation invariants to characterize 

graph structures. Wilson and Zhu [29] investigated combining 

eigenvalues of various graph matrix representations to summa- 

rize a graph structure. Shokoufandeh et al. [20] explored an 

approach to using eigenvalues of the adjacency matrix of the 

directed acyclic graph to construct a topological signature for 

encoding hierarchical image structures. Xiao et al. [30], [31] 

studied the relationship between the  heat  kernel  of  graph  

and the Laplacian spectrum. The rationale of their work lies   

in that the heat kernel of graph can be computed by expo- 

nentiating the Laplacian eigensystem over time. In [30], they 

developed some handcrafted invariants by using heat kernel 

trace and zeta function. They also proposed to embed the 

individual nodes of graphs into a vector space by applying 

multidimensional scaling to the geodesic distances between 

nodes, where the geodesic distances are computed from the 

parametrix expansion of heat kernel [31]. In [32], we proposed 

to use spectral context, i.e., the eigenvalues of the adjacency 

matrices of local graphs, to describe point patterns. However, 

spectral context is not a descriptor in a strict sense, and the 

similarity has to be evaluated by padding zeros into the vectors 

constructed from the eigenvalues. 

In this paper, we inherit the idea of localized spectral rep- 

resentation in [32], which can be used to effectively deal with 

the presence of outliers. In particular, we study how to use   

the spectra of the normalized Laplacian matrix to character- 

ize point patterns. On the one hand, the Laplacian spectra are 

much more natural and important than the adjacency spec-   

tra and contain more information [33]. And the normalized 

Laplacian spectra perform the best with respect to cospec- 

trality according to the empirical study in [29]. On the other 

hand, the known spectral radius of the normalized Laplacian 

matrix is leveraged to construct a fixed size feature vector, 

which results in a well-formed descriptor and is beneficial for 

the potential research on feature learning  [34]–[36]. 

 
III. LOCAL SPECTRAL DESCRIPTOR 

A. Preliminary 

Let  G   =  (V, E; W)  be  a  structural  graph  where  V = 

{v1, v2 , . . . ,  vn} is the node set and E ⊆ V × V is the edge    
set and W is the weight function defined on E. The adjacency 
matrix A of the graph is denoted   by 

.
W(vk, vl) if (vk, vl) ∈ E 

vector of the Laplacian matrix to decompose graphs into 

smaller subgraphs to simplify the complexity of inexact  graph 

A(vk, vl) = 0 otherwise. 
(1)

 

matching. Cour et al. [15] extended [14] by enforcing an affine 

constraint. Pang et al. [27] treated each candidate correspon- 

dence in the affinity matrix as a voter and the matching results 

are efficiently computed by simple addition and  ranking. 

Recently, using graph spectral properties to describe an 

object  has  been  of  particular  interest  as  it  can  provide      

a  discriminative  and  compact  summary  of  graph  structure. 

Let D = diag{d1, d2 , . . . ,  dn} be the diagonal degree matrix 

of   Graph   G,   where   dk    =   
.

(vk,vl)∈E W(vk, vl).   And   the 
Laplacian matrix is defined as 

L = D − A (2) 

which is well-known as a key part in manifold 

learning [37], [38]. The corresponding normalized   Laplacian 
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Step 1: For each ra ∈ RX, choose the sub-point-set  Kia 

where the distances between these points and xi are 
less than ra. 

Step 2:  Construct a weight graph Gia  on the   sub-point-set 
Kia, where the edge weight is defined   as .

  xk xl " 
.

 

W(k, l) = exp 
−"  − 

2β2
 

(5) 

 
 

 

 
 

 

 
 

 

 
 

 
Fig. 1.   Pipeline of descriptor construction. (a) Step 1: choose sub-point-   
sets. (b) Step 2: construct weight graphs on the sub-point-sets. (c) Step 3: 
compute the normalized Laplacian matrices. (d) Step 4: perform singular 
value decomposition (SVD) on the normalized Laplacian matrices. (e) Step 5: 
summarize the eigenvalues as a histogram-based  descriptor. 

where βX is a smoothing coefficient. According to 
our empirical study, βX is not a sensitive parameter, 
and the value in the range of [dX, 2dX ] is applicable. 

We  set βX = 2dX  throughout this paper. 
Step 3:  Define  the  adjacency  matrix  Aia  and  the degree 

diagonal matrix Dia of graph Gia, and then compute 

its Laplacian matrix  Lia 

Lia = Dia − Aia. (6) 

The corresponding normalized form is denoted   by 

Nia = D−1/2 −1/2 
ia     LiaDia    . 

Step 4:  Perform SVD on Nia  and we  have 

Nia  = UiaXiaUT
 

matrix is denoted  by where  Xia  = diag(λ1 2
 Kia 

ia, λ i a, . . . ,  λ
| |

) and Uia  = ⎧ 
1 if k = l (u1 , u2 , . . . ,  u

|Kia|) is composed of the eigenvec- 
ia ia ia 

N(vk, vl) = 
⎨

− W(vk,vl)
 if (vk, vl) ∈ E (3) tors of Nia. The diagonal elements of Xia are the 

⎩ 
0 otherwise. 

We can also write it as N = D−1/2LD−1/2. As the Laplacian 
matrix is positive semidefinite, all its eigenvalues are greater 
than or equal to zero. Its normalization form means that the 

largest eigenvalue is less than or equal to 2, with equality only 

when graph G is bipartite [39]. That is, all the eigenvalues of 

the normalized Laplacian matrix are in the range of [0,   2]. 

 
B. Descriptor Construction 

Suppose that a point-set X is composed of M  points,    X = 
{x1, x2,..., xM}, and a related point-set Y contains N   points, 

Y = {y1, y2,..., yN }. 
Fig. 1 illustrates the pipeline of the construction  procedure, 

including five steps such as sub-point-sets selection and graph 

construction. As we can see, the spectral descriptor is a local 

structural descriptor somewhat like shape context [16]. We 

consequently follow some settings of shape context, for exam- 

ple, five rings for radius. Without loss of generality, we use  

the notation set of point set X to present the details.    We  first 

compute the average closest distance dX of point set X and 

define a set RX = {ra|ra = a · dX, a = 1, 2,..., 5}. Formally, 
dX  is computed by 

dX  = 
. 

min 
.  

xi − xir "|ir /= i
. 
/M. (4) 

eigenvalues of Nia. 
Step 5: Compute the frequencies of falling into each pre- 

defined interval in the range of [0, 2] for all the 

obtained eigenvalues. 

We finally organize the obtained frequencies as a coarse 

histogram, which is defined to be the spectral descriptor of 

point xi. Besides, it has some appealing attributes with respect 

to geometric transformation invariance. 

1) Spectral Descriptor is Invariant to Translation: The 

edge weights of the graph are defined on Euclidean distances, 

and hence the descriptor is invariant to   translation. 

2) Spectral Descriptor is Invariant to Rotation: Obviously, 

the histogram representation is rotation invariant. As the 

chosen  sub-point-set  is  rotation  invariant,  we  only  need   

to   prove   the   permutation   invariance   of   the eigenvalues. 

Let  Nr = ©N©T   be  a  normalized  Laplacian  matrix    con- 
structed on the rearranged sub-point-sets with the permutation 

matrix ©. Substitute N = UXUT into Nr = ©N©T , we have  

Nr = ©UXUT©T = (©U)X(©U)T . Since Nr is a real sym- 
metric matrix, its result of SVD is unique and the diagonal 

values  of  X  are  the  singular  values  of  Nr. So  the spectral 

descriptor is rotation invariant. 

3) Spectral Descriptor is Invariant to Scaling: The chosen 

sub-point-set is scale invariant. And hence, we can make the 
descriptor invariant to scaling simply by tuning the smoothing 

coefficient in (5). For instance, we can set   βY = βXdY/dX. 
M 

 

To construct a histogram-based descriptor, we then uni- 
formly divide the range of [0, 2] into K  intervals. K  is set     

to 200 throughout this paper. For a given point xi ∈ X, its 
spectral descriptor is computed as  follows. 

In step 3, the Gaussian weighting function is used to  define 

edge weights. In [12], several alternative weighting functions 

are suggested to model the proximity between graph nodes.   

In the experimental section, we will evaluate these alternative 

choices for defining edge weights. 
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binary objective function Fg(X, Y, φ) 

F(X, Y, φ) = Fa(X, Y, φ) + αFg(X, Y, φ) (9) 

where  the  coefficient  α  weighs  Fg(X, Y, φ)  and  is  set  to 

0.25 throughout this paper. Fa(X, Y, φ) is defined to evaluate 

the feature similarities computed from the spectral descriptor 

between the matched point sets. The point-wise similarity is 

defined as 
 

ηi,φ (i) ≡ η(xi,φ(xi)) 
. 

0 φ(xi) = nil 
 

Fig. 2. Examples of the spectral descriptor on two toy point-sets. (a) Two toy 
point-sets. (b) Points A and B in one point-set. (c) Point Br corresponding to 

point B in the other point-set. (d) Spectral descriptor for point A. (e) Spectral 
descriptor for point B. (f) Spectral descriptor for point   Br. 

 

 
 

To make it clearer, we provide an example on two toy 

point-sets to demonstrate the discriminative power of the spec- 

tral descriptor in Fig. 2, where one point-set is produced by 

adding positional errors to the other. Note that the histograms 

for the matching points, i.e., points B and Br, are of similar 

distribution. By contrast, the histogram for point A is quite 

different. 

As  the  descriptors  are  distributions  represented  by    his- 

=  
exp 

. 
−C(xi,φ(xi)) 

. 
otherwise 

(10)
 

2δ 
 

where δ is a smoothing coefficient. δ is not a sensitive param- 

eter and we empirically set δ = 1 throughout this paper. 
Accordingly Fa(X, Y, φ) can be given  by 

M 

Fa(X, Y, φ) = 
. 

ηi,φ (i). (11) 

i=1 

Without loss of generality, we use the notation set of point 

set X to introduce the definition of the approximate    distance 

order. The approximate distance order of point xi ∈ X with 

respect to point xir ∈ X \ xi is denoted by 

tograms,  the  matching  cost  C(xi, yj)  between  xi   ∈  X and S 
.
xi, x

r
. 

≡ S 
.
i, ir

. 
= 
,  

r
  ,

. (12) 

yj ∈ Y can be evaluated by the γ 2 test  statistic i xi − xi  /dX 

1   
K   

[hi(k) − hj(k)]2
 We begin with introducing the pairwise error on the approx- 

imate  distance  order  to  define  F (X, Y, φ). Let  ξ(i, i , j, j ) 
   .    

g 
r r 

C 
.
xi, yj

. 
= 

2
 h (k) (8) h (k) denote the order difference between point pairs (x , xr) and 

k=1 
i +  j

 
i     i 

(yj, yr), then we have 

where hi(k) and hj(k) denote the K-bin normalized  histograms 
M     M 

at xi  and yj, respectively. 
eg(X, Y, φ) = 

. . 
 

i=1 ir=1 

ξ 
.
i, ir, φ(i), φ 

.
ir
..

 

IV. APPLYING THE SPECTRAL DESCRIPTOR TO PPM 
N N

 

 

As there may exist many similar local structures in a point- 

set, it is unlikely to achieve an acceptable matching result if 

. . 
+ 

j=1 jr=1 

.
j, jr, φ−1(j), φ −1 

.
j 

r
..

.   (13) 

a local structural descriptor is individually used for solving 

PPM. Consequently, spatial consistency [40] is often com- 

bined with local descriptors to cope with this issue. In this 

paper, we leverage a pairwise constraint, the approximate 

distance order [32], to refine the results produced by the 

descriptor. The approximate distance order can be viewed as   

a generalization of the binary representation of neighboring 

relationship in [41], whose improvement over its original one 

has been validated in [32]. 

In order to deal with the case that a point may match to a 

dummy point, the definition of the approximate distance order 

is augmented to 

S(i, nil) = S(nil, i) = S(nil, nil) = ∞. (14) 

Considering that  the  approximate  distance  order  does  

not change significantly for neighboring  points,  we  define 

ξ(i, ir,φ(i), φ(ir)) as follows: 

In  order  to  tackle  outliers,  the  dummy  point,  nil,        is 
introduced.   The   point   sets   X   and   Y   are   expanded  as 

ξ 
.
i, ir,φ(i), φ .

ir.. 

{x1, x2,..., xM, nil} and {y1, y2,..., yN, nil}, respectively. Let 
⎧ 

S 
.
i, ir

. 
− S 

.
φ (i), φ 

.
ir
.. 2   

if S 
.
i, ir

. 
≤ T 

⎨  

φ : X → Y denote the correspondences between point sets = and S 
.
φ (i), φ 

.
ir
.. 

≤ T 

X and Y, where the correspondences between  inliers are 
⎩

 
one-to-one, but multiple outliers can be matched to a dummy 

point. The problem of establishing optimal matching is formu- 

∞ otherwise  
(15) 

lated as the maximization of an objective function with respect 

to the correspondences. The objective function is defined as 

the sum of the unary objective  function Fa(X, Y, φ) and   the 

where T is a threshold and we set T = 5 throughout this paper. 

ξ(j, jr, φ−1(j), φ−1(jr)) is defined similarly. We cast minimiz- 

ing the pairwise error as maximizing the similarities by   using 

ξ 



 

⎢ ⎥ 

 

a Gaussian function, and then Fg(X, Y, φ) is given  by 
 

Fg(X, Y, φ) 

M 

. 
−ξ 

.
i, ir, φ(i), φ 

.
ir
.. .

 
. . . 

= exp 
2σ 2 

i=1 S(i,ir )≤T S(φ(i),φ(ir ))≤T 

N 

. 
−ξ 

.
j, jr, φ−1(j), φ−1 

.
jr
.. .

 
. . . 

+ exp 2σ 2 
.
 

j=1 S(j,jr )≤T S(φ−1(j),φ−1(jr ))≤T  

(16) 

 

 

Fig. 3.    Model point-set for the experiments on the synthetic    data. 

σ is set to 1 throughout this paper. By representing φ as a 
multivariant function, we can use a matrix P to describe the 

correspondences between point sets X and Y. If points xi ∈ X 
and yj ∈ Y are matched, pij = 1; otherwise, pij = 0. And   the 

extra (M + 1)th row and (N + 1)th column are added to matrix 
P to handle  outliers 

⎡ 
p11 ·· ·  p1N p1,nil 

⎤
 

P = 
⎢

 ...
 . . . 

... ...
 
⎥

. (17) ⎢ 
pM1 · · · pMN pM,nil

⎥
 

⎣ ⎦ 

pnil,1 · · ·  pnil,N 0 

In order to enable one-to-one correspondences, the follow- 

ing constraints are imposed on the matching matrix   P: 
⎧ 

N+1 
⎪ . pij = 1, i = 1, 2 , . . . ,  M 

 
Fig. 4.    Example of labeled point-set in the CMU house    images. 

 

 

nonnegative square matrix with each row and column summing ⎪⎨ 
j=1 

M+1 ⎪⎪ 
.  

pij = 1, j = 1, 2, . . . , N. 
⎩ 

i=1 

Hence F(X, Y, φ) can be written as 

(18) to one and Zheng and Doermann extended it to nonsquare 

matrix. Here, we follow [41] to achieve one-to-one correspon- 

dences. Probabilistic relaxation requires an initial estimation 

for the update procedure and the final solution depends heavily 

on the estimation of the initial solution. In this paper, we    use 
M     N M N the feature similarities computed from the spectral   descriptor 

F(X, Y, P) = 
. . 

ηijpij + 2α 
. . . .

 pijpirjr to  initialize  the  probabilistic  matrix  P.  Similarly,  we  con- 
i=1  j=1 

i=1  S(i,ir)≤T  j=1 S(j,jr)≤T . 
−ξ 

.
i, ir, j, jr

..
 

vert the initial probabilistic matrix P to a generalized doubly 

stochastic matrix to impose the constraint of one-to-one match. 
× exp 2σ 2 

. (19) 
The probabilities for a point matching to a dummy point, pi,nil 

and pnil,j, are set to 0.2 empirically. We perform 200 rounds 
As  pij    ∈   {0, 1},  finding  the  optimal  P  is  a      typical 

NP-hard problem. In order to avoid exhaustive  combinational 

search, we use the well-known technique of probabilistic 

relaxation [42] to find  a  local  optimum  by  relaxing  pij  ∈ 
[0, 1]. The gradient gij with respect to the objective function  
in (19) is . 

−ξ 
.
i, ir, j, jr

..
 

of iterative update in the following experiments, which is 

sufficient to produce a convergent solution according to our 

empirical study. The final correspondences are determined by 

the threshold pij ≥ 0.6. 

 
V. EXPERIMENTS 

In this section, we present our experimental evaluation of 

gij = ηij + 4α 
.

 
. 

pirjr exp 2σ 2 
.  (20)  

the proposed method. Our experiments are conducted on both 
S(i,ir)≤T S(j,jr)≤T 

So the matching probability at  the  rth  iteration  is  

updated by 

N 

synthetic data and real-world images. In these experiments,  

we pay much attention to the algorithm performance in the 

presence of significant positional jitter and  outliers. 

pr r−1   r−1 
. 

r−1  r−1 

ij := pij   gij  / pik   gik   . (21) 

k=1 

A. Experimental Data 

The experimental data are described as  follows. 

As only  a  one-way  normalization  constraint  is  enforced 

in (21), many to one match may exist. In order to enforce one- 

to-one match, Zheng and Doermann [41] proposed to convert 

the updated probability matrix to a generalized doubly stochas- 

tic matrix through the iterative process of alternated row and 

column normalization. The doubly stochastic matrix [43] is  a  

1) Synthetic Data: We perform a model-data matching to 

analyze the influence of positional jitter and outliers quantita- 

tively. As shown in Fig. 3, the model point-set X containing  

52 points is produced on the basis of the dataset provided     

by Chui and Rangarajan [44], which can be viewed as  dis- 

crete  points  sampled  from  a  shape.  A  synthetic   point-set 



 

 

 
 

Fig. 5.    Tested CMU house  images. 

 

Yr = sRX + t is generated for evaluating these     algorithms. 

t = [tx, ty] is the translation vector  and 
.

cos θ − sin θ 
. 

(22)
 

TABLE I 
NUMBER OF LABELED POINTS AND INLIERS IN THE IMAGE PAIRS   OF 

CMU HOUSE 

R =  
sin θ cos θ 

is the 2-D rotation matrix and s is the scaling parameter. The 
transform parameter values are randomly chosen from the 

range  −π  ≤ θ  ≤ π , 1  ≤ tx, ty  ≤ 5  and  0.5  ≤ s  ≤ 1.0. 
Synthetic positional jitter is produced by adding Gaussian 

noise to the position of point-set Yr, where the mean is set     
to  [0  0]T  and  the  standard  deviation  is  defined  using  the 

fraction of the average closest distance of point-set Yr, i.e., 

[λdY 0; 0 λdY ]. λ denotes the fraction. The controlled outliers 
are generated by adding a given number of random points    in 

the scope of Yr. As the synthetic data are randomly gener- 

ated, the experimental results are obtained by performing 100 

independent trials. 

2) CMU House: Following [13], [23], and [26], we also 

evaluate the algorithm performance on the canonical CMU 

house sequence. As shown in  Fig.  5,  six  images  are  cho- 

sen for the experimental evaluation. The first frame, which     

is employed as the template image, is tested against the other 

frames. To enable an accurate simulation, we labeled 60 corre- 

sponding feature points across these frames to simulate corner 

points. An example is demonstrated in Fig. 4. We randomly 

select a given number of corresponding pairs as inliers and 

then remove some of the remaining points in each image to 

produce outliers. The number of feature points and inliers in 

each test pairs are summarized in Table I. As both the inliers 

and the outliers are randomly produced, we run the evalu-  

ated algorithms on each test pair 20 times. Obviously these 

experiments are much more challenging than those on the 

synthetic data due to that both of the matched images con-  

tain outliers and there exists significant perspective distortion 

between them. 

3) Image Pairs: The experiments on some image pairs are 

performed to further investigate the flexibility of the proposed 

algorithm. The evaluated image pairs are shown in Fig. 6, some 

of which are chosen from the ALOI image library [45] and the 

 
 

 

 

 
TABLE II 

NUMBER OF FEATURE POINTS AND INLIERS IN THE IMAGE   PAIRS 

 

 
 
 

Caltech-256 dataset [46]. The feature points are detected using 

the Harris corner detector. The number of detected points and 

the manually checked inliers are reported in Table    II. 

 

B. Results and Discussion 

1) Weighting Function and Parameter Value: In this part, 

we first discuss the effect of using different weighting func- 

tion, and then study some parameter settings in our algorithm. 

In order to achieve the quantitative analysis in an easy way,  

we conduct these evaluations on the synthetic  data. 

As mentioned in Section III, we  can  use  some  alterna- 

tive weighting functions to define edge weights. Here, we 

investigate the performance of using the Gaussian weighting 

function, the sigmoidal weighting function and the increas- 

ing weighting function [12]. Fig. 7 plots the average matching 

accuracy over 100 random trials as a function of the standard 

deviation of the added Gaussian positional errors. The num- 

ber of outliers is five in this evaluation. We can observe that 

the best performance is returned by the Gaussian weighting 

function. Hence, we choose the Gaussian weighting function 

throughout this paper. 

   

   



 

 

 
 

Fig. 6.    Evaluated image  pairs. 

 
 

 

Fig. 7.    Evaluation of different weighting functions on the synthetic   data. 

 

 

Fig. 8.    Evaluation of different values of K  on the synthetic   data. 
 

 
 

Next, we investigate the choice of the value of K. Fig. 8 
shows the average matching accuracy as a function of the value 
of K. The standard deviation of the added Gaussian positional 

errors is set to [0.2dY 0; 0 0.2dY ]. We can observe that K is  

not a sensitive parameter and the best performance is obtained 
in the range of [150, 250]. The performance degrades to some 

extent when the value of K is beyond this range. The reason is 

that small value leads to the loss of the discriminative power of 

the descriptor while large value makes the descriptor sensitive 

to positional errors and  outliers. 

We finally study the effect of varying the value of T. Fig. 9 

plots the average matching accuracy as a function of the value 

of T. We can observe that a useful margin of improvement  on 

Fig. 9.    Evaluation of different values of T  on the synthetic   data. 
 

 

 
accuracy can be obtained if we tune the value of T. As we 

focus on the performance of the descriptor and the compu- 

tation  of  gij  suffers  from  considerable  time  overhead when 

the value of T becomes larger, we set T = 5 that can yield 
moderately better results throughout this  paper. 

2) Matching: In this  part,  we  comprehensively  com-  

pare our algorithm with four methods: the method of 

Leordeanu and Hebert [14], the method of Cour et al. [15],  

the  method  of  Silletti  et  al.  [25],  and  the  method  of  

Pang et al. [27]. For the method of Silletti et al., we do not 

include the metric with respect to pixel information to make    

a fair comparison for these  methods. 

We first investigate the experimental results on the syn- 

thetic data. The experimental settings follow those in the 

evaluation of different weighting functions. The values of the 

control parameter in the compatibility matrix for the method 

of Leordeanu and Hebert and the method of Cour et al. are 

tuned as 0.5 and 0.5, respectively. We test the cases of 0, 5,  

and 10 outliers, respectively  (see Fig. 10). It is known  that  

the method of Leordeanu and Hebert [14] is very sensitive   to 

scaling. As we focus on the algorithm performance for posi- 

tional jitter and outliers, we fix s = 1 for this method when 
generating synthetic data. 

Overall, the proposed matching algorithm performs the best 

in this evaluation. With the increment of  noise  and  out-  

liers,  the  accuracies  of  the  baselines  decrease dramatically. 



 

 

 
 

Fig. 10.    Effect of varying positional jitter on matching accuracy with a given number of outliers. (a) Number of outliers = 0. (b) Number of outliers = 5. 
(c) Number of outliers =  10. 

 

 

Fig. 11. Some matching results on the CMU house images. (a) First image versus the second image. (b) First image versus the third image. (c) First image  
versus the fourth image. (d) First image versus the fifth image. (e) First image versus the sixth image. 

 

It is interesting to see that the results returned by the method 

of  Silletti  et  al.  are  almost  irrelevant  to  outliers,  although 

TABLE III 
RUN TIME (S) ON THE SYNTHETIC DATA 

its overall performance is not that good. This phenomenon    

is  due  largely  to  that  these  experiments  fall  into  the cate- 

gories of model-data matching and the used point associate 

matrix happens to handle this situation well. Although our 

matching results are finally obtained by using iterative opti- 

mization, the solution via probabilistic relaxation is indeed 

closely related to the initial estimation given by the   proposed 

descriptor. Therefore, from these experiments we can validate 

the robustness and the discriminative power of the proposed 

descriptor. 

The run time of each algorithm for the evaluation on the 

case of 0 outlier is reported in Table III. For the method of 

Cour et al., we use the open-source code implemented with 

C++. All the other methods are implemented with MATLAB. 

All our run time results are obtained on a Win7 E5200 2.5G  

Hz PC. The direct comparison is unfair due to the different 

programming  languages,  but  we  can  still  learn  that Pang’s 



 

 

 
 

Fig. 12.        Some matching results on the image pairs. (a) Result on pair A obtained from our method. (b) Result on pair A obtained from Leordeanu’s method. 

(c) Result on pair B obtained from our method. (d) Result on pair B obtained from Cour’s method. (e) Result on pair C obtained from our method. (f) Result    
on pair C obtained from Silletti’s method. (g) Result on pair D obtained from our method. (h) Result on pair D obtained from Pang’s method. 

 
TABLE IV 

AVERAGE ACCURACIES% ON THE IMAGE PAIRS OF THE CMU HOUSE  SEQUENCE 

 

 

TABLE V 
EXPERIMENTAL RESULTS ON THE IMAGE PAIRS (NUMBER OF CORRECT PAIRS/NUMBER OF FOUND PAIRS    AND ACCURACY%) 

 

 
 

method is the most efficient. The method of Leordeanu and 

Hebert, the method of Silletti et al., and our method contain a 

relatively time-consuming procedure of matrix decomposition 

with cubic complexity. The difference of run time between 

them is mainly related to the sizes of the operated matrices. 

The method of Silletti et al. performs decomposition on an 

associate matrix between point-sets. The method of Leordeanu 

and Hebert handles a compatible matrix with  considerable 

size that enumerates all the possible correspondence candi- 

dates, making it unsuitable for large point-sets. Although    the 



 

 

 
 

Fig. 13. Matching result obtained from our method on two toy point-sets  
under nonrigid deformation. 

 
 

decomposition has to be done for each point in our method,    

it is only performed on the graph Laplacian denoting small 

neighboring sub-point-sets. Therefore, our method achieves 

moderately better performance with respect to run   time. 

We then turn to the results on the CMU house images. The 

values of the control parameter in the compatibility matrix   

for the method of Leordeanu and Hebert and the method of 

Cour et al. are tuned as 5 and 10, respectively. The average 

accuracies are summarized in Table IV, where the accuracy is 

computed as the ratio between the average of correct pairs and 

the average of found pairs. Meanwhile, some matching results 

are demonstrated in Fig. 11, where green lines indicate cor- 

rect correspondences while red lines denote mismatches. Our 

method achieves the best performance with respect to accuracy 

and stability. When the difference of viewing angles becomes 

large, the accuracies of the other four methods show an obvi- 

ous tendency of degradation. The worst results are produced 

by Pang’s method. Although Pang’s method is exactly a fast 

matching algorithm, its performance with respect to accuracy 

is not satisfactory. 

Next, we study the results on the image pairs. We  show    

the experimental comparison in Table V, where the results are 

reported as the number of correct pairs/the number of found 

pairs and the accuracies. Some matching results are plotted in 

Fig. 12. In the evaluation on these different kinds of images, 

the proposed method achieves the best relative performance, 

followed by the method of Cour et al. In summary, the con- 

clusion here is basically consistent with that drawn from the 

experiments on the CMU house images, which verify that the 

descriptor provides an effective means for characterizing point 

patterns. 

Finally, we discuss the weakness of the proposed method. 

We investigate the performance of the proposed algorithm in 

the presence of nonrigid deformation. Fig. 13 plots the match- 

ing result on two Chinese character point-sets under nonrigid 

deformation [44]. It can be observed that our method cannot 

handle this situation well. We consider that this disadvantage 

arises from two aspects. 

1) Euclidean distances are used to construct the spectral 

descriptor and they may not be preserved well under 

nonrigid deformation. 

2) It is difficult to achieve a good matching result for point- 

sets under nonrigid deformation using only the proposed 

matching  method  so  that  the  common  framework of 

 

iterative correspondence and transformation estimation 

is needed. 
Although we concentrate on handling outliers and positional 

jitter in this paper, in our ongoing research, we will attempt to 

combine the thin plate spline model [16] with our matching 

method and consider alternative ways to define edge weights 

that are able to resist nonrigid deformation to some    extent. 

 
VI. CONCLUSION 

In this paper, we have studied local spectral representations 

of point patterns in order to improve the robustness of spec- 

tral matching methods against positional jitter and outliers. 

The proposed local descriptor uses the distribution of normal- 

ized Laplacian spectra to characterize feature points. We have 

combined the descriptor with the approximate distance order 

for recovering correspondences. Extensive experiments verify 

that our method is robust to positional jitters and   outliers. 

In the future work, we will pay more attention to utilize 

some other spectral properties. Applying hypergraph to our 

model is another promising direction. 
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