9,640 research outputs found
Approximation Algorithms for Multi-Criteria Traveling Salesman Problems
In multi-criteria optimization problems, several objective functions have to
be optimized. Since the different objective functions are usually in conflict
with each other, one cannot consider only one particular solution as the
optimal solution. Instead, the aim is to compute a so-called Pareto curve of
solutions. Since Pareto curves cannot be computed efficiently in general, we
have to be content with approximations to them.
We design a deterministic polynomial-time algorithm for multi-criteria
g-metric STSP that computes (min{1 +g, 2g^2/(2g^2 -2g +1)} + eps)-approximate
Pareto curves for all 1/2<=g<=1. In particular, we obtain a
(2+eps)-approximation for multi-criteria metric STSP. We also present two
randomized approximation algorithms for multi-criteria g-metric STSP that
achieve approximation ratios of (2g^3 +2g^2)/(3g^2 -2g +1) + eps and (1 +g)/(1
+3g -4g^2) + eps, respectively.
Moreover, we present randomized approximation algorithms for multi-criteria
g-metric ATSP (ratio 1/2 + g^3/(1 -3g^2) + eps) for g < 1/sqrt(3)), STSP with
weights 1 and 2 (ratio 4/3) and ATSP with weights 1 and 2 (ratio 3/2). To do
this, we design randomized approximation schemes for multi-criteria cycle cover
and graph factor problems.Comment: To appear in Algorithmica. A preliminary version has been presented
at the 4th Workshop on Approximation and Online Algorithms (WAOA 2006
A Statistical Semi-Empirical Model: Satellite galaxies in Groups and Clusters
We present STEEL a STatistical sEmi-Empirical modeL designed to probe the
distribution of satellite galaxies in groups and clusters. Our fast statistical
methodology relies on tracing the abundances of central and satellite haloes
via their mass functions at all cosmic epochs with virtually no limitation on
cosmic volume and mass resolution. From mean halo accretion histories and
subhalo mass functions the satellite mass function is progressively built in
time via abundance matching techniques constrained by number densities of
centrals in the local Universe. By enforcing dynamical merging timescales as
predicted by high-resolution N-body simulations, we obtain satellite
distributions as a function of stellar mass and halo mass consistent with
current data. We show that stellar stripping, star formation, and quenching
play all a secondary role in setting the number densities of massive satellites
above . We further show that observed
star formation rates used in our empirical model over predict low-mass
satellites below , whereas, star
formation rates derived from a continuity equation approach yield the correct
abundances similar to previous results for centrals.Comment: 21 pages, 17 Figures. MNRAS, in pres
Thermodynamics and kinetics of reactions in protective coating systems
A study of the aluminization of Ni from packs containing various percentages of unalloyed Al confirmed that the surface aluminum content of specimens aluminized tends to decrease with time and consequently a simple parabolic law for the weight-gain vs. time relationship is not obeyed. The diffusivity-composition relationship in NiAl was examined, and a set of curves is presented. A numerical method for the calculation of coating dissolution rates was developed and applied to NiAl-Ni3Al type of coatings
A Study of Different Modeling Choices For Simulating Platelets Within the Immersed Boundary Method
The Immersed Boundary (IB) method is a widely-used numerical methodology for
the simulation of fluid-structure interaction problems. The IB method utilizes
an Eulerian discretization for the fluid equations of motion while maintaining
a Lagrangian representation of structural objects. Operators are defined for
transmitting information (forces and velocities) between these two
representations. Most IB simulations represent their structures with
piecewise-linear approximations and utilize Hookean spring models to
approximate structural forces. Our specific motivation is the modeling of
platelets in hemodynamic flows. In this paper, we study two alternative
representations - radial basis functions (RBFs) and Fourier-based
(trigonometric polynomials and spherical harmonics) representations - for the
modeling of platelets in two and three dimensions within the IB framework, and
compare our results with the traditional piecewise-linear approximation
methodology. For different representative shapes, we examine the geometric
modeling errors (position and normal vectors), force computation errors, and
computational cost and provide an engineering trade-off strategy for when and
why one might select to employ these different representations.Comment: 33 pages, 17 figures, Accepted (in press) by APNU
Recommended from our members
Passive wireless antenna sensor for strain, temperature, crack and fatigue measurement
An apparatus and method is provided for monitoring a condition of a structure using a passive wireless antenna sensor having a known resonant frequency when mounted on the structure. A series of radio frequency signals are transmitted with sweeping frequencies around the known resonant frequency to the passive wireless antenna sensor. The passive wireless antenna sensor includes a dielectric substrate disposed between an antenna pattern and a ground plane such that a change in the condition of the structure will cause a change in one or more characteristics of the passive wireless sensor. A signal is received from the passive wireless antenna sensor and a resonant frequency of the passive wireless antenna sensor is determined based on the received signal. The determined resonant frequency is then compared to the known resonant frequency, whereby a change in the resonant frequency indicates a change in the condition of the structure.Board of Regents, University of Texas Syste
Practical Network Coding in Sensor Networks: Quo Vadis?
Abstract. Network coding is a novel concept for improving network ca-pacity. This additional capacity may be used to increase throughput or reliability. Also in wireless networks, network coding has been proposed as a method for improving communication. We present our experience from two studies of applying network coding in realistic wireless sen-sor networks scenarios. As we show, network coding is not as useful in practical deployments as earlier theoretical work suggested. We discuss limitations and future opportunities for network coding in sensor net-works. 1 Network Coding in Wireless Sensor Networks Network Coding was introduced by Ahlswede et al. [1], proving that it can in-crease multicast capacity. Since then, it has been investigated in several different networked scenarios which demand different traffic characteristics. Most previous research has focused on theoretical aspects of applying network coding to sensor networks. There are, however, also more practical examples of applying networ
Non destructive inspection of plates using frequency measurements
This paper examines the use of natural frequency measurements and energy formulation of vibration theory to detect damage present in a structure. The extent of change in natural frequencies of the structure due to damage, which is highly dependent on the location and size of damage, is used to detect and characterise damage. An analytical solution to detect and characterise damage in plates from just change in natural frequencies is presented here for the first time. Damage is modelled as a spring with finite stiffness which is less than that of the undamaged structure. Using the strain energies stored in the plate and that of spring, calculated from discrete values of deflection mode shapes, the location and size of the damage is determined. The applicability of this approach is demonstrated through a numerical study, where the location and size of through thickness centre cracks in simply supported plates is deduced with greater than 95 percent accuracy
- …
