1,564 research outputs found

    Impulsivity in Parkinson’s disease is associated with alterations in affective and sensorimotor striatal networks

    Get PDF
    A subset of patients with Parkinson’s disease (PD) experiences problems with impulse control, characterized by a loss of voluntary control over impulses, drives, or temptations regarding excessive hedonic behavior. The present study aimed to better understand the neural basis of such impulse control disorders (ICDs) in PD. We collected resting-state functional connectivity and structural MRI data from 21 PD patients with ICDs and 30 patients without such disorders. To assess impulsivity, all patients completed the Barratt Impulsiveness Scale and performed an information-gathering task. MRI results demonstrated substantial differences in neural characteristics between PD patients with and without ICDs. Results showed that impulsivity was linked to alterations in affective basal ganglia circuitries. Specifically, reduced frontal–striatal connectivity and GPe volume were associated with more impulsivity. We suggest that these changes affect decision making and result in a preference for risky or inappropriate actions. Results further showed that impulsivity was linked to alterations in sensorimotor striatal networks. Enhanced connectivity within this network and larger putamen volume were associated with more impulsivity. We propose that these changes affect sensorimotor processing such that patients have a greater propensity to act. Our findings suggest that the two mechanisms jointly contribute to impulsive behaviors in PD

    Electron Quasiparticles Drive the Superconductor-to-Insulator Transition in Homogeneously Disordered Thin Films

    Full text link
    Transport data on Bi, MoGe, and PbBi/Ge homogeneously-disordered thin films demonstrate that the critical resistivity, RcR_c, at the nominal insulator-superconductor transition is linearly proportional to the normal sheet resistance, RNR_N. In addition, the critical magnetic field scales linearly with the superconducting energy gap and is well-approximated by Hc2H_{c2}. Because RNR_N is determined at high temperatures and Hc2H_{c2} is the pair-breaking field, the two immediate consequences are: 1) electron-quasiparticles populate the insulating side of the transition and 2) standard phase-only models are incapable of describing the destruction of the superconducting state. As gapless electronic excitations populate the insulating state, the universality class is no longer the 3D XY model. The lack of a unique critical resistance in homogeneously disordered films can be understood in this context. In light of the recent experiments which observe an intervening metallic state separating the insulator from the superconductor in homogeneously disordered MoGe thin films, we argue that the two transitions that accompany the destruction of superconductivity are 1) superconductor to Bose metal in which phase coherence is lost and 2) Bose metal to localized electron insulator via pair-breaking.Comment: This article is included in the Festschrift for Prof. Michael Pollak on occasion of his 75th birthda

    The local electronic structure of alpha-Li3N

    Full text link
    New theoretical and experimental investigation of the occupied and unoccupied local electronic density of states (DOS) are reported for alpha-Li3N. Band structure and density functional theory calculations confirm the absence of covalent bonding character. However, real-space full-multiple-scattering (RSFMS) calculations of the occupied local DOS finds less extreme nominal valences than have previously been proposed. Nonresonant inelastic x-ray scattering (NRIXS), RSFMS calculations, and calculations based on the Bethe-Salpeter equation are used to characterize the unoccupied electronic final states local to both the Li and N sites. There is good agreement between experiment and theory. Throughout the Li 1s near-edge region, both experiment and theory find strong similarities in the s- and p-type components of the unoccupied local final density of states projected onto an orbital angular momentum basis (l-DOS). An unexpected, significant correspondence exists between the near-edge spectra for the Li 1s and N 1s initial states. We argue that both spectra are sampling essentially the same final density of states due to the combination of long core-hole lifetimes, long photoelectron lifetimes, and the fact that orbital angular momentum is the same for all relevant initial states. Such considerations may be generically applicable for low atomic number compounds.Comment: 34 pages, 7 figures, 1 tabl

    Too much noise in the Times Higher Education rankings

    Get PDF
    Several individual indicators from the Times Higher Education Survey (THES) data base—the overall score, the reported staff-to-student ratio, and the peer ratings—demonstrate unacceptably high fluctuation from year to year. The inappropriateness of the summary tabulations for assessing the majority of the “top 200” universities would be apparent purely for reason of this obvious statistical instability regardless of other grounds of criticism. There are far too many anomalies in the change scores of the various indices for them to be of use in the course of university management

    Exciton spectroscopy of hexagonal boron nitride using non-resonant x-ray Raman scattering

    Full text link
    We report non-resonant x-ray Raman scattering (XRS) measurements from hexagonal boron nitride for transferred momentum from 2 to 9 A˚1\mathrm{\AA}^{-1} along directions both in and out of the basal plane. A symmetry-based argument, together with real-space full multiple scattering calculations of the projected density of states in the spherical harmonics basis, reveals that a strong pre-edge feature is a dominantly Y10Y_{10}-type Frenkel exciton with no other \textit{s}-, \textit{p}-, or \textit{d}- components. This conclusion is supported by a second, independent calculation of the \textbf{q}-dependent XRS cross-section based on the Bethe-Salpeter equation

    Two-Tone Optomechanical Instability and Its Fundamental Implications for Backaction-Evading Measurements

    Get PDF
    While quantum mechanics imposes a fundamental limit on the precision of interferometric measurements of mechanical motion due to measurement backaction, the nonlinear nature of the coupling also leads to parametric instabilities that place practical limits on the sensitivity by limiting the power in the interferometer. Such instabilities have been extensively studied in the context of gravitational wave detectors, and their presence has recently been reported in Advanced LIGO. Here, we observe experimentally and describe theoretically a new type of optomechanical instability that arises in two-tone backaction-evading (BAE) measurements, designed to overcome the standard quantum limit, and demonstrate the effect in the optical domain with a photonic crystal nanobeam, and in the microwave domain with a micromechanical oscillator coupled to a microwave resonator. In contrast to the well-known oscillatory parametric instability that occurs in single-tone, blue-detuned pumping, which is characterized by a vanishing effective mechanical damping, the parametric instability in balanced two-tone optomechanics is exponential, and is a result of small detuning errors in the two pump frequencies. Its origin can be understood in a rotating frame as the vanishing of the effective mechanical frequency due to an optical spring effect. Counterintuitively, the instability occurs even in the presence of perfectly balanced intracavity fields, and can occur for both signs of detuning. We find excellent quantitative agreement with our theoretical predictions. Since the constraints on tuning accuracy become stricter with increasing probe power, it imposes a fundamental limitation on BAE measurements, as well as other two-tone schemes. In addition to introducing a new limitation in two-tone BAE measurements, the results also introduce a new type of nonlinear dynamics in cavity optomechanics
    corecore